Compare commits

...

1 Commits

Author SHA1 Message Date
Bryan Petty
7e104fb26e This commit was manufactured by cvs2svn to create tag
'WX_MAIN_AFTER_UNIV_MERGE'.

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/tags/WX_MAIN_AFTER_UNIV_MERGE@10752 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
2001-07-01 23:17:26 +00:00
35 changed files with 0 additions and 14947 deletions

View File

@@ -1,15 +0,0 @@
# Top dir of wxWindows
top_builddir = /gtm/bart/wxGTK
PROGRAM=dbbrowser_gtk
OBJECTS= dbbrowse.o doc.o pgmctrl.o tabpgwin.o\
browsedb.o dbtree.o dbgrid.o dlguser.o
include $(top_builddir)/src/makeprog.env

View File

@@ -1,173 +0,0 @@
/////////////////////////////////////////////////////////////////////////////
// Name: filter.cpp
// Purpose: wxHtmlFilter - input filter for translating into HTML format
// Author: Vaclav Slavik
// Copyright: (c) 1999 Vaclav Slavik
// Licence: wxWindows Licence
/////////////////////////////////////////////////////////////////////////////
#ifdef __GNUG__
#pragma implementation "htmlfilter.h"
#endif
#include "wx/wxprec.h"
#if wxUSE_HTML
#ifdef __BORDLANDC__
#pragma hdrstop
#endif
#ifndef WXPRECOMP
#include "wx/wx.h"
#endif
#include "wx/html/htmlfilter.h"
#include "wx/html/htmlwin.h"
/*
There is code for several default filters:
*/
IMPLEMENT_ABSTRACT_CLASS(wxHtmlFilter, wxObject)
//--------------------------------------------------------------------------------
// wxHtmlFilterPlainText
// filter for text/plain or uknown
//--------------------------------------------------------------------------------
IMPLEMENT_DYNAMIC_CLASS(wxHtmlFilterPlainText, wxHtmlFilter)
bool wxHtmlFilterPlainText::CanRead(const wxFSFile& WXUNUSED(file)) const
{
return TRUE;
}
wxString wxHtmlFilterPlainText::ReadFile(const wxFSFile& file) const
{
wxInputStream *s = file.GetStream();
char *src;
wxString doc, doc2;
if (s == NULL) return wxEmptyString;
src = new char[s -> GetSize()+1];
src[s -> GetSize()] = 0;
s -> Read(src, s -> GetSize());
doc = src;
delete [] src;
doc.Replace(_T("<"), _T("&lt;"), TRUE);
doc.Replace(_T(">"), _T("&gt;"), TRUE);
doc2 = _T("<HTML><BODY><PRE>\n") + doc + _T("\n</PRE></BODY></HTML>");
return doc2;
}
//--------------------------------------------------------------------------------
// wxHtmlFilterImage
// filter for image/*
//--------------------------------------------------------------------------------
class wxHtmlFilterImage : public wxHtmlFilter
{
DECLARE_DYNAMIC_CLASS(wxHtmlFilterImage)
public:
virtual bool CanRead(const wxFSFile& file) const;
virtual wxString ReadFile(const wxFSFile& file) const;
};
IMPLEMENT_DYNAMIC_CLASS(wxHtmlFilterImage, wxHtmlFilter)
bool wxHtmlFilterImage::CanRead(const wxFSFile& file) const
{
return (file.GetMimeType().Left(6) == "image/");
}
wxString wxHtmlFilterImage::ReadFile(const wxFSFile& file) const
{
return ("<HTML><BODY><IMG SRC=\"" + file.GetLocation() + "\"></BODY></HTML>");
}
//--------------------------------------------------------------------------------
// wxHtmlFilterPlainText
// filter for text/plain or uknown
//--------------------------------------------------------------------------------
class wxHtmlFilterHTML : public wxHtmlFilter
{
DECLARE_DYNAMIC_CLASS(wxHtmlFilterHTML)
public:
virtual bool CanRead(const wxFSFile& file) const;
virtual wxString ReadFile(const wxFSFile& file) const;
};
IMPLEMENT_DYNAMIC_CLASS(wxHtmlFilterHTML, wxHtmlFilter)
bool wxHtmlFilterHTML::CanRead(const wxFSFile& file) const
{
// return (file.GetMimeType() == "text/html");
// This is true in most case but some page can return:
// "text/html; char-encoding=...."
// So we use Find instead
return (file.GetMimeType().Find(_T("text/html")) == 0);
}
wxString wxHtmlFilterHTML::ReadFile(const wxFSFile& file) const
{
wxInputStream *s = file.GetStream();
char *src;
wxString doc;
if (s == NULL) return wxEmptyString;
src = new char[s -> GetSize() + 1];
src[s -> GetSize()] = 0;
s -> Read(src, s -> GetSize());
doc = src;
delete[] src;
return doc;
}
///// Module:
class wxHtmlFilterModule : public wxModule
{
DECLARE_DYNAMIC_CLASS(wxHtmlFilterModule)
public:
virtual bool OnInit()
{
wxHtmlWindow::AddFilter(new wxHtmlFilterHTML);
wxHtmlWindow::AddFilter(new wxHtmlFilterImage);
return TRUE;
}
virtual void OnExit() {}
};
IMPLEMENT_DYNAMIC_CLASS(wxHtmlFilterModule, wxModule)
#endif

View File

@@ -1,835 +0,0 @@
// Name: htmlhelp.cpp
// Purpose: Help controller
// Author: Vaclav Slavik
// Copyright: (c) 1999 Vaclav Slavik
// Licence: wxWindows Licence
/////////////////////////////////////////////////////////////////////////////
#error This file should not be compiled! Update your build system! \
(configure users, rerun configure to get a new Makefile) \
Instead of htmlhelp[_io], use helpdata, helpfrm and helpctrl. This \
file is only left to point out the problem and will be removed r.s.n.
#ifdef __GNUG__
#pragma implementation "htmlhelp.h"
#endif
#include "wx/wxprec.h"
#if wxUSE_HTML
#ifdef __BORDLANDC__
#pragma hdrstop
#endif
#ifndef WXPRECOMP
#include <wx/wx.h>
#endif
#include <wx/notebook.h>
#include <wx/imaglist.h>
#include <wx/treectrl.h>
#include <wx/tokenzr.h>
#include <wx/wfstream.h>
#include <wx/html/htmlwin.h>
#include <wx/html/htmlhelp.h>
#include <wx/busyinfo.h>
#if !((wxVERSION_NUMBER < 2100) || ((wxVERSION_NUMBER == 2100) && (wxBETA_NUMBER < 7)))
#include <wx/progdlg.h>
#endif
// Bitmaps:
#ifndef __WXMSW__
#include "bitmaps/panel.xpm"
#include "bitmaps/back.xpm"
#include "bitmaps/forward.xpm"
#include "bitmaps/book.xpm"
#include "bitmaps/folder.xpm"
#include "bitmaps/page.xpm"
#endif
#include "search.h"
#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY(HtmlBookRecArray)
//-----------------------------------------------------------------------------
// wxHtmlHelpController
//-----------------------------------------------------------------------------
IMPLEMENT_DYNAMIC_CLASS(wxHtmlHelpController, wxEvtHandler)
wxHtmlHelpController::wxHtmlHelpController() : wxEvtHandler()
{
m_Frame = NULL;
m_Config = NULL;
m_ConfigRoot = wxEmptyString;
m_TitleFormat = _("Help : %s");
m_TempPath = wxEmptyString;
m_Cfg.x = m_Cfg.y = 0;
m_Cfg.w = 700; m_Cfg.h = 480;
m_Cfg.sashpos = 240;
m_Cfg.navig_on = TRUE;
m_ContentsImageList = new wxImageList(12, 12);
m_ContentsImageList -> Add(wxICON(book));
m_ContentsImageList -> Add(wxICON(folder));
m_ContentsImageList -> Add(wxICON(page));
m_Contents = NULL;
m_ContentsCnt = 0;
m_Index = NULL;
m_IndexCnt = 0;
m_IndexBox = NULL;
m_ContentsBox = NULL;
m_SearchList = NULL;
m_SearchText = NULL;
m_SearchButton = NULL;
m_HtmlWin = NULL;
m_Splitter = NULL;
m_NavigPan = NULL;
}
wxHtmlHelpController::~wxHtmlHelpController()
{
int i;
m_BookRecords.Empty();
delete m_ContentsImageList;
if (m_Contents) {
for (i = 0; i < m_ContentsCnt; i++) {
delete[] m_Contents[i].m_Page;
delete[] m_Contents[i].m_Name;
}
free(m_Contents);
}
if (m_Index) {
for (i = 0; i < m_IndexCnt; i++) {
delete[] m_Index[i].m_Page;
delete[] m_Index[i].m_Name;
}
free(m_Index);
}
}
void wxHtmlHelpController::SetTempDir(const wxString& path)
{
if (path == wxEmptyString) m_TempPath = path;
else {
if (wxIsAbsolutePath(path)) m_TempPath = path;
else m_TempPath = wxGetCwd() + "/" + path;
if (m_TempPath[m_TempPath.Length() - 1] != '/')
m_TempPath << "/";
}
}
// Reads one line, stores it into buf and returns pointer to new line or NULL.
static char* ReadLine(char *line, char *buf)
{
char *writeptr = buf, *readptr = line;
while (*readptr != 0 && *readptr != '\r' && *readptr != '\n') *(writeptr++) = *(readptr++);
*writeptr = 0;
while (*readptr == '\r' || *readptr == '\n') readptr++;
if (*readptr == 0) return NULL;
else return readptr;
}
static wxString SafeFileName(const wxString& s)
{
wxString res = s;
res.Replace(_T(":"), _T("_"), TRUE);
res.Replace(_T(" "), _T("_"), TRUE);
res.Replace(_T("/"), _T("_"), TRUE);
res.Replace(_T("\\"), _T("_"), TRUE);
res.Replace(_T("#"), _T("_"), TRUE);
res.Replace(_T("."), _T("_"), TRUE);
return res;
}
static int IndexCompareFunc(const void *a, const void *b)
{
return strcmp(((HtmlContentsItem*)a) -> m_Name, ((HtmlContentsItem*)b) -> m_Name);
}
bool wxHtmlHelpController::AddBook(const wxString& book, bool show_wait_msg)
{
wxFSFile *fi;
wxFileSystem fsys;
wxInputStream *s;
HtmlBookRecord *bookr;
wxString bookFull;
int sz;
char *buff, *lineptr;
char linebuf[300];
wxString title = _("noname"),
safetitle,
start = wxEmptyString,
contents = wxEmptyString, index = wxEmptyString;
if (wxIsAbsolutePath(book)) bookFull = book;
else bookFull = wxGetCwd() + "/" + book;
fi = fsys.OpenFile(bookFull);
if (fi == NULL) return FALSE;
fsys.ChangePathTo(bookFull);
s = fi -> GetStream();
sz = s -> GetSize();
buff = new char[sz+1];
buff[sz] = 0;
s -> Read(buff, sz);
lineptr = buff;
delete fi;
while ((lineptr = ReadLine(lineptr, linebuf)) != NULL) {
if (strstr(linebuf, "Title=") == linebuf)
title = linebuf + strlen("Title=");
if (strstr(linebuf, "Default topic=") == linebuf)
start = linebuf + strlen("Default topic=");
if (strstr(linebuf, "Index file=") == linebuf)
index = linebuf + strlen("Index file=");
if (strstr(linebuf, "Contents file=") == linebuf)
contents = linebuf + strlen("Contents file=");
}
delete[] buff;
bookr = new HtmlBookRecord(fsys.GetPath(), title, start);
if (m_ContentsCnt % HTML_REALLOC_STEP == 0)
m_Contents = (HtmlContentsItem*) realloc(m_Contents, (m_ContentsCnt + HTML_REALLOC_STEP) * sizeof(HtmlContentsItem));
m_Contents[m_ContentsCnt].m_Level = 0;
m_Contents[m_ContentsCnt].m_ID = 0;
m_Contents[m_ContentsCnt].m_Page = new char[start.Length() + 1];
strcpy(m_Contents[m_ContentsCnt].m_Page, start.c_str());
m_Contents[m_ContentsCnt].m_Name = new char [title.Length() + 1];
strcpy(m_Contents[m_ContentsCnt].m_Name, title.c_str());
m_Contents[m_ContentsCnt].m_Book = bookr;
m_ContentsCnt++;
// Try to find cached binary versions:
safetitle = SafeFileName(title);
fi = fsys.OpenFile(safetitle + ".cached");
if (fi == NULL) fi = fsys.OpenFile(m_TempPath + safetitle + ".cached");
if ((fi == NULL) || (m_TempPath == wxEmptyString)) {
LoadMSProject(bookr, fsys, index, contents, show_wait_msg);
if (m_TempPath != wxEmptyString) {
wxFileOutputStream *outs = new wxFileOutputStream(m_TempPath + safetitle + ".cached");
SaveCachedBook(bookr, outs);
delete outs;
}
}
else {
LoadCachedBook(bookr, fi -> GetStream());
delete fi;
}
m_BookRecords.Add(bookr);
if (m_IndexCnt > 0)
qsort(m_Index, m_IndexCnt, sizeof(HtmlContentsItem), IndexCompareFunc);
return TRUE;
}
void wxHtmlHelpController::Display(const wxString& x)
{
int cnt;
int i;
wxFileSystem fsys;
wxFSFile *f;
CreateHelpWindow();
/* 1. try to open given file: */
cnt = m_BookRecords.GetCount();
for (i = 0; i < cnt; i++) {
f = fsys.OpenFile(m_BookRecords[i].GetBasePath() + x);
if (f) {
m_HtmlWin -> LoadPage(m_BookRecords[i].GetBasePath() + x);
delete f;
return;
}
}
/* 2. try to find a book: */
for (i = 0; i < cnt; i++) {
if (m_BookRecords[i].GetTitle() == x) {
m_HtmlWin -> LoadPage(m_BookRecords[i].GetBasePath() + m_BookRecords[i].GetStart());
return;
}
}
/* 3. try to find in contents: */
cnt = m_ContentsCnt;
for (i = 0; i < cnt; i++) {
if (strcmp(m_Contents[i].m_Name, x) == 0) {
m_HtmlWin -> LoadPage(m_Contents[i].m_Book -> GetBasePath() + m_Contents[i].m_Page);
return;
}
}
/* 4. try to find in index: */
cnt = m_IndexCnt;
for (i = 0; i < cnt; i++) {
if (strcmp(m_Index[i].m_Name, x) == 0) {
m_HtmlWin -> LoadPage(m_Index[i].m_Book -> GetBasePath() + m_Index[i].m_Page);
return;
}
}
/* 5. if everything failed, search the documents: */
KeywordSearch(x);
}
void wxHtmlHelpController::Display(const int id)
{
CreateHelpWindow();
for (int i = 0; i < m_ContentsCnt; i++) {
if (m_Contents[i].m_ID == id) {
m_HtmlWin -> LoadPage(m_Contents[i].m_Book -> GetBasePath() + m_Contents[i].m_Page);
return;
}
}
}
void wxHtmlHelpController::DisplayContents()
{
CreateHelpWindow();
m_Frame -> Raise();
if (!m_Splitter -> IsSplit()) {
m_NavigPan -> Show(TRUE);
m_HtmlWin -> Show(TRUE);
m_Splitter -> SplitVertically(m_NavigPan, m_HtmlWin, m_Cfg.sashpos);
}
m_NavigPan -> SetSelection(0);
}
void wxHtmlHelpController::DisplayIndex()
{
CreateHelpWindow();
m_Frame -> Raise();
if (!m_Splitter -> IsSplit()) {
m_NavigPan -> Show(TRUE);
m_HtmlWin -> Show(TRUE);
m_Splitter -> SplitVertically(m_NavigPan, m_HtmlWin, m_Cfg.sashpos);
}
m_NavigPan -> SetSelection(1);
}
#if (wxVERSION_NUMBER < 2100) || ((wxVERSION_NUMBER == 2100) && (wxBETA_NUMBER < 7))
class MyProgressDlg : public wxDialog
{
public:
bool m_Canceled;
MyProgressDlg(wxWindow *parent) : wxDialog(parent, -1,
_("Searching..."),
wxPoint(0, 0),
#ifdef __WXGTK__
wxSize(300, 110))
#else
wxSize(300, 130))
#endif
{m_Canceled = FALSE;}
void OnCancel(wxCommandEvent& event) {m_Canceled = TRUE;}
DECLARE_EVENT_TABLE()
};
BEGIN_EVENT_TABLE(MyProgressDlg, wxDialog)
EVT_BUTTON(wxID_CANCEL, MyProgressDlg::OnCancel)
END_EVENT_TABLE()
#endif
bool wxHtmlHelpController::KeywordSearch(const wxString& keyword)
{
int foundcnt = 0;
CreateHelpWindow();
// if these are not set, we can't continue
if (! (m_SearchList && m_HtmlWin))
return FALSE;
m_Frame -> Raise();
if (m_Splitter && m_NavigPan && m_SearchButton) {
if (!m_Splitter -> IsSplit()) {
m_NavigPan -> Show(TRUE);
m_HtmlWin -> Show(TRUE);
m_Splitter -> SplitVertically(m_NavigPan, m_HtmlWin, m_Cfg.sashpos);
}
m_NavigPan -> SetSelection(2);
m_SearchList -> Clear();
m_SearchText -> SetValue(keyword);
m_SearchButton -> Enable(FALSE);
}
{
int cnt = m_ContentsCnt;
wxSearchEngine engine;
wxFileSystem fsys;
wxFSFile *file;
wxString lastpage = wxEmptyString;
wxString foundstr;
#if (wxVERSION_NUMBER < 2100) || ((wxVERSION_NUMBER == 2100) && (wxBETA_NUMBER < 7))
MyProgressDlg progress(m_Frame);
wxStaticText *prompt = new wxStaticText(&progress, -1, "", wxPoint(20, 50), wxSize(260, 25), wxALIGN_CENTER);
wxGauge *gauge = new wxGauge(&progress, -1, cnt, wxPoint(20, 20), wxSize(260, 25));
wxButton *btn = new wxButton(&progress, wxID_CANCEL, _("Cancel"), wxPoint(110, 70), wxSize(80, 25));
btn = btn; /* fool compiler :-) */
prompt -> SetLabel(_("No matching page found yet"));
progress.Centre(wxBOTH);
progress.Show(TRUE);
#else
wxProgressDialog progress(_("Searching..."), _("No matching page found yet"), cnt, m_Frame, wxPD_APP_MODAL | wxPD_CAN_ABORT | wxPD_AUTO_HIDE);
#endif
engine.LookFor(keyword);
for (int i = 0; i < cnt; i++) {
#if (wxVERSION_NUMBER < 2100) || ((wxVERSION_NUMBER == 2100) && (wxBETA_NUMBER < 7))
gauge -> SetValue(i);
if (progress.m_Canceled) break;
#else
if (progress.Update(i) == FALSE) break;
#endif
wxYield();
file = fsys.OpenFile(m_Contents[i].m_Book -> GetBasePath() + m_Contents[i].m_Page);
if (file) {
if (lastpage != file -> GetLocation()) {
lastpage = file -> GetLocation();
if (engine.Scan(file -> GetStream())) {
foundstr.Printf(_("Found %i matches"), ++foundcnt);
#if (wxVERSION_NUMBER < 2100) || ((wxVERSION_NUMBER == 2100) && (wxBETA_NUMBER < 7))
prompt -> SetLabel(foundstr);
#else
progress.Update(i, foundstr);
#endif
wxYield();
m_SearchList -> Append(m_Contents[i].m_Name, (char*)(m_Contents + i));
}
}
delete file;
}
}
#if (wxVERSION_NUMBER < 2100) || ((wxVERSION_NUMBER == 2100) && (wxBETA_NUMBER < 7))
progress.Close(TRUE);
#endif
}
if (m_SearchButton)
m_SearchButton -> Enable(TRUE);
if (m_SearchText) {
m_SearchText -> SetSelection(0, keyword.Length());
m_SearchText -> SetFocus();
}
if (foundcnt) {
HtmlContentsItem *it = (HtmlContentsItem*) m_SearchList -> GetClientData(0);
if (it) m_HtmlWin -> LoadPage(it -> m_Book -> GetBasePath() + it -> m_Page);
}
return (foundcnt > 0);
}
void wxHtmlHelpController::CreateHelpWindow()
{
wxBusyCursor cur;
wxString oldpath;
wxStatusBar *sbar;
if (m_Frame) {
m_Frame -> Raise();
m_Frame -> Show(TRUE);
return;
}
#if wxUSE_BUSYINFO
wxBusyInfo busyinfo(_("Preparing help window..."));
#endif
if (m_Config) ReadCustomization(m_Config, m_ConfigRoot);
m_Frame = new wxFrame(NULL, -1, "", wxPoint(m_Cfg.x, m_Cfg.y), wxSize(m_Cfg.w, m_Cfg.h));
m_Frame -> PushEventHandler(this);
sbar = m_Frame -> CreateStatusBar();
{
wxToolBar *toolBar;
toolBar = m_Frame -> CreateToolBar(wxNO_BORDER | wxTB_HORIZONTAL | wxTB_FLAT | wxTB_DOCKABLE);
toolBar -> SetMargins(2, 2);
wxBitmap* toolBarBitmaps[3];
#ifdef __WXMSW__
toolBarBitmaps[0] = new wxBitmap("panel");
toolBarBitmaps[1] = new wxBitmap("back");
toolBarBitmaps[2] = new wxBitmap("forward");
int width = 24;
#else
toolBarBitmaps[0] = new wxBitmap(panel_xpm);
toolBarBitmaps[1] = new wxBitmap(back_xpm);
toolBarBitmaps[2] = new wxBitmap(forward_xpm);
int width = 16;
#endif
int currentX = 5;
toolBar -> AddTool(wxID_HTML_PANEL, *(toolBarBitmaps[0]), wxNullBitmap, FALSE, currentX, -1, (wxObject *) NULL, _("Show/hide navigation panel"));
currentX += width + 5;
toolBar -> AddSeparator();
toolBar -> AddTool(wxID_HTML_BACK, *(toolBarBitmaps[1]), wxNullBitmap, FALSE, currentX, -1, (wxObject *) NULL, _("Go back to the previous HTML page"));
currentX += width + 5;
toolBar -> AddTool(wxID_HTML_FORWARD, *(toolBarBitmaps[2]), wxNullBitmap, FALSE, currentX, -1, (wxObject *) NULL, _("Go forward to the next HTML page"));
currentX += width + 5;
toolBar -> Realize();
// Can delete the bitmaps since they're reference counted
for (int i = 0; i < 3; i++) delete toolBarBitmaps[i];
}
{
m_Splitter = new wxSplitterWindow(m_Frame);
m_HtmlWin = new wxHtmlWindow(m_Splitter);
m_HtmlWin -> SetRelatedFrame(m_Frame, m_TitleFormat);
m_HtmlWin -> SetRelatedStatusBar(0);
if (m_Config) m_HtmlWin -> ReadCustomization(m_Config, m_ConfigRoot);
m_NavigPan = new wxNotebook(m_Splitter, wxID_HTML_NOTEBOOK, wxDefaultPosition, wxDefaultSize);
{
m_ContentsBox = new wxTreeCtrl(m_NavigPan, wxID_HTML_TREECTRL, wxDefaultPosition, wxDefaultSize, wxTR_HAS_BUTTONS | wxSUNKEN_BORDER);
m_ContentsBox -> SetImageList(m_ContentsImageList);
m_NavigPan -> AddPage(m_ContentsBox, _("Contents"));
}
{
wxWindow *dummy = new wxPanel(m_NavigPan, wxID_HTML_INDEXPAGE);
wxLayoutConstraints *b1 = new wxLayoutConstraints;
b1 -> top.SameAs (dummy, wxTop, 0);
b1 -> left.SameAs (dummy, wxLeft, 0);
b1 -> width.PercentOf (dummy, wxWidth, 100);
b1 -> bottom.SameAs (dummy, wxBottom, 0);
m_IndexBox = new wxListBox(dummy, wxID_HTML_INDEXLIST, wxDefaultPosition, wxDefaultSize, 0);
m_IndexBox -> SetConstraints(b1);
dummy -> SetAutoLayout(TRUE);
m_NavigPan -> AddPage(dummy, _("Index"));
}
{
wxWindow *dummy = new wxPanel(m_NavigPan, wxID_HTML_SEARCHPAGE);
wxLayoutConstraints *b1 = new wxLayoutConstraints;
m_SearchText = new wxTextCtrl(dummy, wxID_HTML_SEARCHTEXT);
b1 -> top.SameAs (dummy, wxTop, 0);
b1 -> left.SameAs (dummy, wxLeft, 0);
b1 -> right.SameAs (dummy, wxRight, 0);
b1 -> height.AsIs();
m_SearchText -> SetConstraints(b1);
wxLayoutConstraints *b2 = new wxLayoutConstraints;
m_SearchButton = new wxButton(dummy, wxID_HTML_SEARCHBUTTON, _("Search!"));
b2 -> top.Below (m_SearchText, 10);
b2 -> right.SameAs (dummy, wxRight, 10);
b2 -> width.AsIs();
b2 -> height.AsIs();
m_SearchButton -> SetConstraints(b2);
wxLayoutConstraints *b3 = new wxLayoutConstraints;
m_SearchList = new wxListBox(dummy, wxID_HTML_SEARCHLIST, wxDefaultPosition, wxDefaultSize, 0);
b3 -> top.Below (m_SearchButton, 10);
b3 -> left.SameAs (dummy, wxLeft, 0);
b3 -> right.SameAs (dummy, wxRight, 0);
b3 -> bottom.SameAs (dummy, wxBottom, 0);
m_SearchList -> SetConstraints(b3);
dummy -> SetAutoLayout(TRUE);
dummy -> Layout();
m_NavigPan -> AddPage(dummy, _("Search"));
}
RefreshLists();
m_NavigPan -> Show(TRUE);
m_HtmlWin -> Show(TRUE);
m_Splitter -> SetMinimumPaneSize(20);
m_Splitter -> SplitVertically(m_NavigPan, m_HtmlWin, m_Cfg.sashpos);
if (!m_Cfg.navig_on) m_Splitter -> Unsplit(m_NavigPan);
wxYield();
}
m_Frame -> Show(TRUE);
wxYield();
}
#define MAX_ROOTS 64
void wxHtmlHelpController::CreateContents()
{
HtmlContentsItem *it;
wxTreeItemId roots[MAX_ROOTS];
bool imaged[MAX_ROOTS];
int count = m_ContentsCnt;
m_ContentsBox -> DeleteAllItems();
roots[0] = m_ContentsBox -> AddRoot(_("(Help)"));
imaged[0] = TRUE;
for (int i = 0; i < count; i++) {
it = m_Contents + i;
roots[it -> m_Level + 1] = m_ContentsBox -> AppendItem(roots[it -> m_Level], it -> m_Name, IMG_Page, -1, new wxHtmlHelpTreeItemData(it));
if (it -> m_Level == 0) {
m_ContentsBox -> SetItemBold(roots[1], TRUE);
m_ContentsBox -> SetItemImage(roots[1], IMG_Book);
m_ContentsBox -> SetItemSelectedImage(roots[1], IMG_Book);
imaged[1] = TRUE;
}
else imaged[it -> m_Level + 1] = FALSE;
if (!imaged[it -> m_Level]) {
m_ContentsBox -> SetItemImage(roots[it -> m_Level], IMG_Folder);
m_ContentsBox -> SetItemSelectedImage(roots[it -> m_Level], IMG_Folder);
imaged[it -> m_Level] = TRUE;
}
}
m_ContentsBox -> Expand(roots[0]);
}
void wxHtmlHelpController::CreateIndex()
{
m_IndexBox -> Clear();
for (int i = 0; i < m_IndexCnt; i++)
m_IndexBox -> Append(m_Index[i].m_Name, (char*)(m_Index + i));
}
void wxHtmlHelpController::RefreshLists()
{
if (m_Frame) {
CreateContents();
CreateIndex();
m_SearchList -> Clear();
}
}
void wxHtmlHelpController::ReadCustomization(wxConfigBase *cfg, wxString path)
{
wxString oldpath;
wxString tmp;
if (path != wxEmptyString) {
oldpath = cfg -> GetPath();
cfg -> SetPath(path);
}
m_Cfg.navig_on = cfg -> Read("hcNavigPanel", m_Cfg.navig_on) != 0;
m_Cfg.sashpos = cfg -> Read("hcSashPos", m_Cfg.sashpos);
m_Cfg.x = cfg -> Read("hcX", m_Cfg.x);
m_Cfg.y = cfg -> Read("hcY", m_Cfg.y);
m_Cfg.w = cfg -> Read("hcW", m_Cfg.w);
m_Cfg.h = cfg -> Read("hcH", m_Cfg.h);
if (path != wxEmptyString)
cfg -> SetPath(oldpath);
}
void wxHtmlHelpController::WriteCustomization(wxConfigBase *cfg, wxString path)
{
wxString oldpath;
wxString tmp;
if (path != wxEmptyString) {
oldpath = cfg -> GetPath();
cfg -> SetPath(path);
}
cfg -> Write("hcNavigPanel", m_Cfg.navig_on);
cfg -> Write("hcSashPos", (long)m_Cfg.sashpos);
cfg -> Write("hcX", (long)m_Cfg.x);
cfg -> Write("hcY", (long)m_Cfg.y);
cfg -> Write("hcW", (long)m_Cfg.w);
cfg -> Write("hcH", (long)m_Cfg.h);
if (path != wxEmptyString)
cfg -> SetPath(oldpath);
}
/*
EVENT HANDLING :
*/
void wxHtmlHelpController::OnToolbar(wxCommandEvent& event)
{
switch (event.GetId()) {
case wxID_HTML_BACK :
m_HtmlWin -> HistoryBack();
break;
case wxID_HTML_FORWARD :
m_HtmlWin -> HistoryForward();
break;
case wxID_HTML_PANEL :
if (m_Splitter -> IsSplit()) {
m_Cfg.sashpos = m_Splitter -> GetSashPosition();
m_Splitter -> Unsplit(m_NavigPan);
}
else {
m_NavigPan -> Show(TRUE);
m_HtmlWin -> Show(TRUE);
m_Splitter -> SplitVertically(m_NavigPan, m_HtmlWin, m_Cfg.sashpos);
}
break;
}
}
void wxHtmlHelpController::OnContentsSel(wxTreeEvent& event)
{
wxHtmlHelpTreeItemData *pg;
pg = (wxHtmlHelpTreeItemData*) m_ContentsBox -> GetItemData(event.GetItem());
if (pg) m_HtmlWin -> LoadPage(pg -> GetPage());
}
void wxHtmlHelpController::OnIndexSel(wxCommandEvent& event)
{
HtmlContentsItem *it = (HtmlContentsItem*) m_IndexBox -> GetClientData(m_IndexBox -> GetSelection());
if (it) m_HtmlWin -> LoadPage(it -> m_Book -> GetBasePath() + it -> m_Page);
}
void wxHtmlHelpController::OnSearchSel(wxCommandEvent& event)
{
HtmlContentsItem *it = (HtmlContentsItem*) m_SearchList -> GetClientData(m_SearchList -> GetSelection());
if (it) m_HtmlWin -> LoadPage(it -> m_Book -> GetBasePath() + it -> m_Page);
}
void wxHtmlHelpController::OnCloseWindow(wxCloseEvent& event)
{
int a, b;
m_Cfg.navig_on = m_Splitter -> IsSplit();
if (m_Cfg.navig_on)
m_Cfg.sashpos = m_Splitter -> GetSashPosition();
m_Frame -> GetPosition(&a, &b);
m_Cfg.x = a, m_Cfg.y = b;
m_Frame -> GetSize(&a, &b);
m_Cfg.w = a, m_Cfg.h = b;
if (m_Config) {
WriteCustomization(m_Config, m_ConfigRoot);
m_HtmlWin -> WriteCustomization(m_Config, m_ConfigRoot);
}
m_Frame = NULL;
event.Skip();
}
void wxHtmlHelpController::OnSearch(wxCommandEvent& event)
{
wxString sr = m_SearchText -> GetLineText(0);
if (sr != wxEmptyString) KeywordSearch(sr);
}
BEGIN_EVENT_TABLE(wxHtmlHelpController, wxEvtHandler)
EVT_TOOL_RANGE(wxID_HTML_PANEL, wxID_HTML_FORWARD, wxHtmlHelpController::OnToolbar)
EVT_TREE_SEL_CHANGED(wxID_HTML_TREECTRL, wxHtmlHelpController::OnContentsSel)
EVT_LISTBOX(wxID_HTML_INDEXLIST, wxHtmlHelpController::OnIndexSel)
EVT_LISTBOX(wxID_HTML_SEARCHLIST, wxHtmlHelpController::OnSearchSel)
EVT_CLOSE(wxHtmlHelpController::OnCloseWindow)
EVT_BUTTON(wxID_HTML_SEARCHBUTTON, wxHtmlHelpController::OnSearch)
EVT_TEXT_ENTER(wxID_HTML_SEARCHTEXT, wxHtmlHelpController::OnSearch)
END_EVENT_TABLE()
#endif

View File

@@ -1,74 +0,0 @@
/////////////////////////////////////////////////////////////////////////////
// Name: search.cpp
// Purpose: search engine
// Author: Vaclav Slavik
// RCS-ID: $Id$
// Copyright: (c) 1999 Vaclav Slavik
// Licence: wxWindows Licence
/////////////////////////////////////////////////////////////////////////////
#ifdef __GNUG__
#pragma implementation
#endif
#include "wx/wxprec.h"
#include "wx/defs.h"
#if wxUSE_HTML
#ifdef __BORDLANDC__
#pragma hdrstop
#endif
#ifndef WXPRECOMP
#include <wx/wx.h>
#endif
#include "wx/html/helpdata.h"
//--------------------------------------------------------------------------------
// wxSearchEngine
//--------------------------------------------------------------------------------
void wxSearchEngine::LookFor(const wxString& keyword)
{
if (m_Keyword) delete[] m_Keyword;
m_Keyword = new wxChar[keyword.Length() + 1];
wxStrcpy(m_Keyword, keyword.c_str());
for (int i = wxStrlen(m_Keyword) - 1; i >= 0; i--)
if ((m_Keyword[i] >= wxT('A')) && (m_Keyword[i] <= wxT('Z')))
m_Keyword[i] += wxT('a') - wxT('A');
}
bool wxSearchEngine::Scan(wxInputStream *stream)
{
wxASSERT_MSG(m_Keyword != NULL, _("wxSearchEngine::LookFor must be called before scanning!"));
int i, j;
int lng = stream ->GetSize();
int wrd = wxStrlen(m_Keyword);
bool found = FALSE;
char *buf = new char[lng + 1];
stream -> Read(buf, lng);
buf[lng] = 0;
for (i = 0; i < lng; i++)
if ((buf[i] >= 'A') && (buf[i] <= 'Z')) buf[i] += 'a' - 'A';
for (i = 0; i < lng - wrd; i++) {
j = 0;
while ((j < wrd) && (buf[i + j] == m_Keyword[j])) j++;
if (j == wrd) {found = TRUE; break;}
}
delete[] buf;
return found;
}
#endif

View File

@@ -1,68 +0,0 @@
#
# File: makefile.nt
# Author: Julian Smart
# Created: 1993
# Updated:
# Copyright: (c) 1993, AIAI, University of Edinburgh
#
# "%W% %G%"
#
# Makefile : Builds winpng.lib library for Windows 3.1
# Change WXDIR or WXWIN to wherever wxWindows is found
WXDIR = $(WXWIN)
WXLIB = $(WXDIR)\lib\wx.lib
WXINC = $(WXDIR)\include
WINPNGDIR = ..\png
WINPNGINC = $(WINPNGDIR)
WINPNGLIB = ..\..\lib\winpng.lib
INC = /I..\zlib
FINAL=1
# Set this to nothing if your compiler is MS C++ 7
ZOPTION=
!ifndef FINAL
FINAL=0
!endif
PRECOMP=/YuWX.H
!if "$(FINAL)" == "0"
OPT = /Od
CPPFLAGS= /W4 /Zi /MD /GX- $(ZOPTION) $(OPT) /Dwx_msw $(INC) # $(PRECOMP) /Fp$(WXDIR)\src\msw\wx.pch
CFLAGS= /W4 /Zi /MD /GX- /Od /Dwx_msw $(INC)
LINKFLAGS=/NOD /CO /ONERROR:NOEXE
!else
# /Ox for real FINAL version
OPT = /O2
CPPFLAGS= /W4 /MD /GX- /Dwx_msw $(INC) # $(PRECOMP) /Fp$(WXDIR)\src\msw\wx.pch
CFLAGS= /W4 /MD /GX- /Dwx_msw $(INC)
LINKFLAGS=/NOD /ONERROR:NOEXE
!endif
OBJECTS = png.obj pngread.obj pngrtran.obj pngrutil.obj \
pngpread.obj pngtrans.obj pngwrite.obj pngwtran.obj pngwutil.obj \
pngerror.obj pngmem.obj pngwio.obj pngrio.obj pngget.obj pngset.obj
all: $(WINPNGLIB)
$(WINPNGLIB): $(OBJECTS)
erase $(WINPNGLIB)
lib @<<
-out:$(WINPNGLIB)
$(OBJECTS)
<<
.c.obj:
cl -DWIN32 $(OPT) $(CFLAGS) /c $*.c
clean:
erase *.obj
erase *.exe
erase *.lib
cleanall: clean

View File

@@ -1,20 +0,0 @@
Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.
Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:
1. The author is not responsible for the consequences of use of this
software, no matter how awful, even if they arise from flaws in it.
2. The origin of this software must not be misrepresented, either by
explicit claim or by omission. Since few users ever read sources,
credits must appear in the documentation.
3. Altered versions must be plainly marked as such, and must not be
misrepresented as being the original software. Since few users
ever read sources, credits must appear in the documentation.
4. This notice may not be removed or altered.

View File

@@ -1,130 +0,0 @@
# You probably want to take -DREDEBUG out of CFLAGS, and put something like
# -O in, *after* testing (-DREDEBUG strengthens testing by enabling a lot of
# internal assertion checking and some debugging facilities).
# Put -Dconst= in for a pre-ANSI compiler.
# Do not take -DPOSIX_MISTAKE out.
# REGCFLAGS isn't important to you (it's for my use in some special contexts).
CFLAGS=-I. -DPOSIX_MISTAKE -DREDEBUG $(REGCFLAGS)
# If you have a pre-ANSI compiler, put -o into MKHFLAGS. If you want
# the Berkeley __P macro, put -b in.
MKHFLAGS=
# Flags for linking but not compiling, if any.
LDFLAGS=
# Extra libraries for linking, if any.
LIBS=
# Internal stuff, should not need changing.
OBJPRODN=regcomp.o regexec.o regerror.o regfree.o
OBJS=$(OBJPRODN) split.o debug.o main.o
H=cclass.h cname.h regex2.h utils.h
REGSRC=regcomp.c regerror.c regexec.c regfree.c
ALLSRC=$(REGSRC) engine.c debug.c main.c split.c
# Stuff that matters only if you're trying to lint the package.
LINTFLAGS=-I. -Dstatic= -Dconst= -DREDEBUG
LINTC=regcomp.c regexec.c regerror.c regfree.c debug.c main.c
JUNKLINT=possible pointer alignment|null effect
# arrangements to build forward-reference header files
.SUFFIXES: .ih .h
.c.ih:
sh ./mkh $(MKHFLAGS) -p $< >$@
default: r
lib: purge $(OBJPRODN)
rm -f libregex.a
ar crv libregex.a $(OBJPRODN)
purge:
rm -f *.o
# stuff to build regex.h
REGEXH=regex.h
REGEXHSRC=regex2.h $(REGSRC)
$(REGEXH): $(REGEXHSRC) mkh
sh ./mkh $(MKHFLAGS) -i _REGEX_H_ $(REGEXHSRC) >regex.tmp
cmp -s regex.tmp regex.h 2>/dev/null || cp regex.tmp regex.h
rm -f regex.tmp
# dependencies
$(OBJPRODN) debug.o: utils.h regex.h regex2.h
regcomp.o: cclass.h cname.h regcomp.ih
regexec.o: engine.c engine.ih
regerror.o: regerror.ih
debug.o: debug.ih
main.o: main.ih
# tester
re: $(OBJS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJS) $(LIBS) -o $@
# regression test
r: re tests
./re <tests
./re -el <tests
./re -er <tests
# 57 variants, and other stuff, for development use -- not useful to you
ra: ./re tests
-./re <tests
-./re -el <tests
-./re -er <tests
rx: ./re tests
./re -x <tests
./re -x -el <tests
./re -x -er <tests
t: ./re tests
-time ./re <tests
-time ./re -cs <tests
-time ./re -el <tests
-time ./re -cs -el <tests
l: $(LINTC)
lint $(LINTFLAGS) -h $(LINTC) 2>&1 | egrep -v '$(JUNKLINT)' | tee lint
fullprint:
ti README WHATSNEW notes todo | list
ti *.h | list
list *.c
list regex.3 regex.7
print:
ti README WHATSNEW notes todo | list
ti *.h | list
list reg*.c engine.c
mf.tmp: Makefile
sed '/^REGEXH=/s/=.*/=regex.h/' Makefile | sed '/#DEL$$/d' >$@
DTRH=cclass.h cname.h regex2.h utils.h
PRE=COPYRIGHT README WHATSNEW
POST=mkh regex.3 regex.7 tests $(DTRH) $(ALLSRC) fake/*.[ch]
FILES=$(PRE) Makefile $(POST)
DTR=$(PRE) Makefile=mf.tmp $(POST)
dtr: $(FILES) mf.tmp
makedtr $(DTR) >$@
rm mf.tmp
cio: $(FILES)
cio $(FILES)
rdf: $(FILES)
rcsdiff -c $(FILES) 2>&1 | p
# various forms of cleanup
tidy:
rm -f junk* core core.* *.core dtr *.tmp lint
clean: tidy
rm -f *.o *.s *.ih re libregex.a
# don't do this one unless you know what you're doing
spotless: clean
rm -f mkh regex.h

View File

@@ -1,32 +0,0 @@
alpha3.8 release.
Tue Aug 10 15:51:48 EDT 1999
henry@spsystems.net (formerly henry@zoo.toronto.edu)
See WHATSNEW for change listing.
installation notes:
--------
Read the comments at the beginning of Makefile before running.
Utils.h contains some things that just might have to be modified on
some systems, as well as a nested include (ugh) of <assert.h>.
The "fake" directory contains quick-and-dirty fakes for some header
files and routines that old systems may not have. Note also that
-DUSEBCOPY will make utils.h substitute bcopy() for memmove().
After that, "make r" will build regcomp.o, regexec.o, regfree.o,
and regerror.o (the actual routines), bundle them together into a test
program, and run regression tests on them. No output is good output.
"make lib" builds just the .o files for the actual routines (when
you're happy with testing and have adjusted CFLAGS for production),
and puts them together into libregex.a. You can pick up either the
library or *.o ("make lib" makes sure there are no other .o files left
around to confuse things).
Main.c, debug.c, split.c are used for regression testing but are not part
of the RE routines themselves.
Regex.h goes in /usr/include. All other .h files are internal only.
--------

View File

@@ -1,108 +0,0 @@
New in alpha3.8: Bug fix for signed/unsigned mixup, found and fixed
by the FreeBSD folks.
New in alpha3.7: A bit of cleanup aimed at maximizing portability,
possibly at slight cost in efficiency. "ul" suffixes and "unsigned long"
no longer appear, in particular.
New in alpha3.6: A couple more portability glitches fixed.
New in alpha3.5: Active development of this code has been stopped --
I'm working on a complete reimplementation -- but folks have found some
minor portability glitches and the like, hence this release to fix them.
One penalty: slightly reduced compatibility with old compilers, because
the ANSI C `unsigned long' type and `ul' constant suffix are used in a
few places (I could avoid this but it would be considerably more work).
New in alpha3.4: The complex bug alluded to below has been fixed (in a
slightly kludgey temporary way that may hurt efficiency a bit; this is
another "get it out the door for 4.4" release). The tests at the end of
the tests file have accordingly been uncommented. The primary sign of
the bug was that something like a?b matching ab matched b rather than ab.
(The bug was essentially specific to this exact situation, else it would
have shown up earlier.)
New in alpha3.3: The definition of word boundaries has been altered
slightly, to more closely match the usual programming notion that "_"
is an alphabetic. Stuff used for pre-ANSI systems is now in a subdir,
and the makefile no longer alludes to it in mysterious ways. The
makefile has generally been cleaned up some. Fixes have been made
(again!) so that the regression test will run without -DREDEBUG, at
the cost of weaker checking. A workaround for a bug in some folks'
<assert.h> has been added. And some more things have been added to
tests, including a couple right at the end which are commented out
because the code currently flunks them (complex bug; fix coming).
Plus the usual minor cleanup.
New in alpha3.2: Assorted bits of cleanup and portability improvement
(the development base is now a BSDI system using GCC instead of an ancient
Sun system, and the newer compiler exposed some glitches). Fix for a
serious bug that affected REs using many [] (including REG_ICASE REs
because of the way they are implemented), *sometimes*, depending on
memory-allocation patterns. The header-file prototypes no longer name
the parameters, avoiding possible name conflicts. The possibility that
some clot has defined CHAR_MIN as (say) `-128' instead of `(-128)' is
now handled gracefully. "uchar" is no longer used as an internal type
name (too many people have the same idea). Still the same old lousy
performance, alas.
New in alpha3.1: Basically nothing, this release is just a bookkeeping
convenience. Stay tuned.
New in alpha3.0: Performance is no better, alas, but some fixes have been
made and some functionality has been added. (This is basically the "get
it out the door in time for 4.4" release.) One bug fix: regfree() didn't
free the main internal structure (how embarrassing). It is now possible
to put NULs in either the RE or the target string, using (resp.) a new
REG_PEND flag and the old REG_STARTEND flag. The REG_NOSPEC flag to
regcomp() makes all characters ordinary, so you can match a literal
string easily (this will become more useful when performance improves!).
There are now primitives to match beginnings and ends of words, although
the syntax is disgusting and so is the implementation. The REG_ATOI
debugging interface has changed a bit. And there has been considerable
internal cleanup of various kinds.
New in alpha2.3: Split change list out of README, and moved flags notes
into Makefile. Macro-ized the name of regex(7) in regex(3), since it has
to change for 4.4BSD. Cleanup work in engine.c, and some new regression
tests to catch tricky cases thereof.
New in alpha2.2: Out-of-date manpages updated. Regerror() acquires two
small extensions -- REG_ITOA and REG_ATOI -- which avoid debugging kludges
in my own test program and might be useful to others for similar purposes.
The regression test will now compile (and run) without REDEBUG. The
BRE \$ bug is fixed. Most uses of "uchar" are gone; it's all chars now.
Char/uchar parameters are now written int/unsigned, to avoid possible
portability problems with unpromoted parameters. Some unsigned casts have
been introduced to minimize portability problems with shifting into sign
bits.
New in alpha2.1: Lots of little stuff, cleanup and fixes. The one big
thing is that regex.h is now generated, using mkh, rather than being
supplied in the distribution; due to circularities in dependencies,
you have to build regex.h explicitly by "make h". The two known bugs
have been fixed (and the regression test now checks for them), as has a
problem with assertions not being suppressed in the absence of REDEBUG.
No performance work yet.
New in alpha2: Backslash-anything is an ordinary character, not an
error (except, of course, for the handful of backslashed metacharacters
in BREs), which should reduce script breakage. The regression test
checks *where* null strings are supposed to match, and has generally
been tightened up somewhat. Small bug fixes in parameter passing (not
harmful, but technically errors) and some other areas. Debugging
invoked by defining REDEBUG rather than not defining NDEBUG.
New in alpha+3: full prototyping for internal routines, using a little
helper program, mkh, which extracts prototypes given in stylized comments.
More minor cleanup. Buglet fix: it's CHAR_BIT, not CHAR_BITS. Simple
pre-screening of input when a literal string is known to be part of the
RE; this does wonders for performance.
New in alpha+2: minor bits of cleanup. Notably, the number "32" for the
word width isn't hardwired into regexec.c any more, the public header
file prototypes the functions if __STDC__ is defined, and some small typos
in the manpages have been fixed.
New in alpha+1: improvements to the manual pages, and an important
extension, the REG_STARTEND option to regexec().

View File

@@ -1,31 +0,0 @@
/* character-class table */
static struct cclass {
char *name;
char *chars;
char *multis;
} cclasses[] = {
"alnum", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\
0123456789", "",
"alpha", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz",
"",
"blank", " \t", "",
"cntrl", "\007\b\t\n\v\f\r\1\2\3\4\5\6\16\17\20\21\22\23\24\
\25\26\27\30\31\32\33\34\35\36\37\177", "",
"digit", "0123456789", "",
"graph", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\
0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~",
"",
"lower", "abcdefghijklmnopqrstuvwxyz",
"",
"print", "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\
0123456789!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~ ",
"",
"punct", "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~",
"",
"space", "\t\n\v\f\r ", "",
"upper", "ABCDEFGHIJKLMNOPQRSTUVWXYZ",
"",
"xdigit", "0123456789ABCDEFabcdef",
"",
NULL, 0, ""
};

View File

@@ -1,102 +0,0 @@
/* character-name table */
static struct cname {
char *name;
char code;
} cnames[] = {
"NUL", '\0',
"SOH", '\001',
"STX", '\002',
"ETX", '\003',
"EOT", '\004',
"ENQ", '\005',
"ACK", '\006',
"BEL", '\007',
"alert", '\007',
"BS", '\010',
"backspace", '\b',
"HT", '\011',
"tab", '\t',
"LF", '\012',
"newline", '\n',
"VT", '\013',
"vertical-tab", '\v',
"FF", '\014',
"form-feed", '\f',
"CR", '\015',
"carriage-return", '\r',
"SO", '\016',
"SI", '\017',
"DLE", '\020',
"DC1", '\021',
"DC2", '\022',
"DC3", '\023',
"DC4", '\024',
"NAK", '\025',
"SYN", '\026',
"ETB", '\027',
"CAN", '\030',
"EM", '\031',
"SUB", '\032',
"ESC", '\033',
"IS4", '\034',
"FS", '\034',
"IS3", '\035',
"GS", '\035',
"IS2", '\036',
"RS", '\036',
"IS1", '\037',
"US", '\037',
"space", ' ',
"exclamation-mark", '!',
"quotation-mark", '"',
"number-sign", '#',
"dollar-sign", '$',
"percent-sign", '%',
"ampersand", '&',
"apostrophe", '\'',
"left-parenthesis", '(',
"right-parenthesis", ')',
"asterisk", '*',
"plus-sign", '+',
"comma", ',',
"hyphen", '-',
"hyphen-minus", '-',
"period", '.',
"full-stop", '.',
"slash", '/',
"solidus", '/',
"zero", '0',
"one", '1',
"two", '2',
"three", '3',
"four", '4',
"five", '5',
"six", '6',
"seven", '7',
"eight", '8',
"nine", '9',
"colon", ':',
"semicolon", ';',
"less-than-sign", '<',
"equals-sign", '=',
"greater-than-sign", '>',
"question-mark", '?',
"commercial-at", '@',
"left-square-bracket", '[',
"backslash", '\\',
"reverse-solidus", '\\',
"right-square-bracket", ']',
"circumflex", '^',
"circumflex-accent", '^',
"underscore", '_',
"low-line", '_',
"grave-accent", '`',
"left-brace", '{',
"left-curly-bracket", '{',
"vertical-line", '|',
"right-brace", '}',
"right-curly-bracket", '}',
"tilde", '~',
"DEL", '\177',
NULL, 0,
};

View File

@@ -1,35 +0,0 @@
/* ========= begin header generated by ./mkh ========= */
#ifdef __cplusplus
extern "C" {
#endif
/* === engine.c === */
static int matcher(register struct re_guts *g, char *string, size_t nmatch, regmatch_t pmatch[], int eflags);
static char *dissect(register struct match *m, char *start, char *stop, sopno startst, sopno stopst);
static char *backref(register struct match *m, char *start, char *stop, sopno startst, sopno stopst, sopno lev);
static char *fast(register struct match *m, char *start, char *stop, sopno startst, sopno stopst);
static char *slow(register struct match *m, char *start, char *stop, sopno startst, sopno stopst);
static states step(register struct re_guts *g, sopno start, sopno stop, register states bef, int ch, register states aft);
#define BOL (OUT+1)
#define EOL (BOL+1)
#define BOLEOL (BOL+2)
#define NOTHING (BOL+3)
#define BOW (BOL+4)
#define EOW (BOL+5)
#define CODEMAX (BOL+5) /* highest code used */
#define NONCHAR(c) ((c) > CHAR_MAX)
#define NNONCHAR (CODEMAX-CHAR_MAX)
#ifdef REDEBUG
static void print(struct match *m, char *caption, states st, int ch, FILE *d);
#endif
#ifdef REDEBUG
static void at(struct match *m, char *title, char *start, char *stop, sopno startst, sopno stopst);
#endif
#ifdef REDEBUG
static char *pchar(int ch);
#endif
#ifdef __cplusplus
}
#endif
/* ========= end header generated by ./mkh ========= */

View File

@@ -1,76 +0,0 @@
#! /bin/sh
# mkh - pull headers out of C source
PATH=/bin:/usr/bin ; export PATH
# egrep pattern to pick out marked lines
egrep='^ =([ ]|$)'
# Sed program to process marked lines into lines for the header file.
# The markers have already been removed. Two things are done here: removal
# of backslashed newlines, and some fudging of comments. The first is done
# because -o needs to have prototypes on one line to strip them down.
# Getting comments into the output is tricky; we turn C++-style // comments
# into /* */ comments, after altering any existing */'s to avoid trouble.
peel=' /\\$/N
/\\\n[ ]*/s///g
/\/\//s;\*/;* /;g
/\/\//s;//\(.*\);/*\1 */;'
for a
do
case "$a" in
-o) # old (pre-function-prototype) compiler
# add code to comment out argument lists
peel="$peel
"'/^\([^#\/][^\/]*[a-zA-Z0-9_)]\)(\(.*\))/s;;\1(/*\2*/);'
shift
;;
-b) # funny Berkeley __P macro
peel="$peel
"'/^\([^#\/][^\/]*[a-zA-Z0-9_)]\)(\(.*\))/s;;\1 __P((\2));'
shift
;;
-s) # compiler doesn't like `static foo();'
# add code to get rid of the `static'
peel="$peel
"'/^static[ ][^\/]*[a-zA-Z0-9_)](.*)/s;static.;;'
shift
;;
-p) # private declarations
egrep='^ ==([ ]|$)'
shift
;;
-i) # wrap in #ifndef, argument is name
ifndef="$2"
shift ; shift
;;
*) break
;;
esac
done
if test " $ifndef" != " "
then
echo "#ifndef $ifndef"
echo "#define $ifndef /* never again */"
fi
echo "/* ========= begin header generated by $0 ========= */"
echo '#ifdef __cplusplus'
echo 'extern "C" {'
echo '#endif'
for f
do
echo
echo "/* === $f === */"
egrep "$egrep" $f | sed 's/^ ==*[ ]//;s/^ ==*$//' | sed "$peel"
echo
done
echo '#ifdef __cplusplus'
echo '}'
echo '#endif'
echo "/* ========= end header generated by $0 ========= */"
if test " $ifndef" != " "
then
echo "#endif"
fi
exit 0

View File

@@ -1,970 +0,0 @@
'\"
'\" Copyright (c) 1998 Sun Microsystems, Inc.
'\" Copyright (c) 1999 Scriptics Corporation
'\"
'\" This software is copyrighted by the Regents of the University of
'\" California, Sun Microsystems, Inc., Scriptics Corporation, ActiveState
'\" Corporation and other parties. The following terms apply to all files
'\" associated with the software unless explicitly disclaimed in
'\" individual files.
'\"
'\" The authors hereby grant permission to use, copy, modify, distribute,
'\" and license this software and its documentation for any purpose, provided
'\" that existing copyright notices are retained in all copies and that this
'\" notice is included verbatim in any distributions. No written agreement,
'\" license, or royalty fee is required for any of the authorized uses.
'\" Modifications to this software may be copyrighted by their authors
'\" and need not follow the licensing terms described here, provided that
'\" the new terms are clearly indicated on the first page of each file where
'\" they apply.
'\"
'\" IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
'\" FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
'\" ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
'\" DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
'\" POSSIBILITY OF SUCH DAMAGE.
'\"
'\" THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
'\" INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
'\" FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
'\" IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
'\" NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
'\" MODIFICATIONS.
'\"
'\" GOVERNMENT USE: If you are acquiring this software on behalf of the
'\" U.S. government, the Government shall have only "Restricted Rights"
'\" in the software and related documentation as defined in the Federal
'\" Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
'\" are acquiring the software on behalf of the Department of Defense, the
'\" software shall be classified as "Commercial Computer Software" and the
'\" Government shall have only "Restricted Rights" as defined in Clause
'\" 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the
'\" authors grant the U.S. Government and others acting in its behalf
'\" permission to use and distribute the software in accordance with the
'\" terms specified in this license.
'\"
'\" RCS: @(#) Id: re_syntax.n,v 1.3 1999/07/14 19:09:36 jpeek Exp
'\"
.so man.macros
.TH re_syntax n "8.1" Tcl "Tcl Built-In Commands"
.BS
.SH NAME
re_syntax \- Syntax of Tcl regular expressions.
.BE
.SH DESCRIPTION
.PP
A \fIregular expression\fR describes strings of characters.
It's a pattern that matches certain strings and doesn't match others.
.SH "DIFFERENT FLAVORS OF REs"
Regular expressions (``RE''s), as defined by POSIX, come in two
flavors: \fIextended\fR REs (``EREs'') and \fIbasic\fR REs (``BREs'').
EREs are roughly those of the traditional \fIegrep\fR, while BREs are
roughly those of the traditional \fIed\fR. This implementation adds
a third flavor, \fIadvanced\fR REs (``AREs''), basically EREs with
some significant extensions.
.PP
This manual page primarily describes AREs. BREs mostly exist for
backward compatibility in some old programs; they will be discussed at
the end. POSIX EREs are almost an exact subset of AREs. Features of
AREs that are not present in EREs will be indicated.
.SH "REGULAR EXPRESSION SYNTAX"
.PP
Tcl regular expressions are implemented using the package written by
Henry Spencer, based on the 1003.2 spec and some (not quite all) of
the Perl5 extensions (thanks, Henry!). Much of the description of
regular expressions below is copied verbatim from his manual entry.
.PP
An ARE is one or more \fIbranches\fR,
separated by `\fB|\fR',
matching anything that matches any of the branches.
.PP
A branch is zero or more \fIconstraints\fR or \fIquantified atoms\fR,
concatenated.
It matches a match for the first, followed by a match for the second, etc;
an empty branch matches the empty string.
.PP
A quantified atom is an \fIatom\fR possibly followed
by a single \fIquantifier\fR.
Without a quantifier, it matches a match for the atom.
The quantifiers,
and what a so-quantified atom matches, are:
.RS 2
.TP 6
\fB*\fR
a sequence of 0 or more matches of the atom
.TP
\fB+\fR
a sequence of 1 or more matches of the atom
.TP
\fB?\fR
a sequence of 0 or 1 matches of the atom
.TP
\fB{\fIm\fB}\fR
a sequence of exactly \fIm\fR matches of the atom
.TP
\fB{\fIm\fB,}\fR
a sequence of \fIm\fR or more matches of the atom
.TP
\fB{\fIm\fB,\fIn\fB}\fR
a sequence of \fIm\fR through \fIn\fR (inclusive) matches of the atom;
\fIm\fR may not exceed \fIn\fR
.TP
\fB*? +? ?? {\fIm\fB}? {\fIm\fB,}? {\fIm\fB,\fIn\fB}?\fR
\fInon-greedy\fR quantifiers,
which match the same possibilities,
but prefer the smallest number rather than the largest number
of matches (see MATCHING)
.RE
.PP
The forms using
\fB{\fR and \fB}\fR
are known as \fIbound\fRs.
The numbers
\fIm\fR and \fIn\fR are unsigned decimal integers
with permissible values from 0 to 255 inclusive.
.PP
An atom is one of:
.RS 2
.TP 6
\fB(\fIre\fB)\fR
(where \fIre\fR is any regular expression)
matches a match for
\fIre\fR, with the match noted for possible reporting
.TP
\fB(?:\fIre\fB)\fR
as previous,
but does no reporting
(a ``non-capturing'' set of parentheses)
.TP
\fB()\fR
matches an empty string,
noted for possible reporting
.TP
\fB(?:)\fR
matches an empty string,
without reporting
.TP
\fB[\fIchars\fB]\fR
a \fIbracket expression\fR,
matching any one of the \fIchars\fR (see BRACKET EXPRESSIONS for more detail)
.TP
\fB.\fR
matches any single character
.TP
\fB\e\fIk\fR
(where \fIk\fR is a non-alphanumeric character)
matches that character taken as an ordinary character,
e.g. \e\e matches a backslash character
.TP
\fB\e\fIc\fR
where \fIc\fR is alphanumeric
(possibly followed by other characters),
an \fIescape\fR (AREs only),
see ESCAPES below
.TP
\fB{\fR
when followed by a character other than a digit,
matches the left-brace character `\fB{\fR';
when followed by a digit, it is the beginning of a
\fIbound\fR (see above)
.TP
\fIx\fR
where \fIx\fR is
a single character with no other significance, matches that character.
.RE
.PP
A \fIconstraint\fR matches an empty string when specific conditions
are met.
A constraint may not be followed by a quantifier.
The simple constraints are as follows; some more constraints are
described later, under ESCAPES.
.RS 2
.TP 8
\fB^\fR
matches at the beginning of a line
.TP
\fB$\fR
matches at the end of a line
.TP
\fB(?=\fIre\fB)\fR
\fIpositive lookahead\fR (AREs only), matches at any point
where a substring matching \fIre\fR begins
.TP
\fB(?!\fIre\fB)\fR
\fInegative lookahead\fR (AREs only), matches at any point
where no substring matching \fIre\fR begins
.RE
.PP
The lookahead constraints may not contain back references (see later),
and all parentheses within them are considered non-capturing.
.PP
An RE may not end with `\fB\e\fR'.
.SH "BRACKET EXPRESSIONS"
A \fIbracket expression\fR is a list of characters enclosed in `\fB[\|]\fR'.
It normally matches any single character from the list (but see below).
If the list begins with `\fB^\fR',
it matches any single character
(but see below) \fInot\fR from the rest of the list.
.PP
If two characters in the list are separated by `\fB\-\fR',
this is shorthand
for the full \fIrange\fR of characters between those two (inclusive) in the
collating sequence,
e.g.
\fB[0\-9]\fR
in ASCII matches any decimal digit.
Two ranges may not share an
endpoint, so e.g.
\fBa\-c\-e\fR
is illegal.
Ranges are very collating-sequence-dependent,
and portable programs should avoid relying on them.
.PP
To include a literal
\fB]\fR
or
\fB\-\fR
in the list,
the simplest method is to
enclose it in
\fB[.\fR and \fB.]\fR
to make it a collating element (see below).
Alternatively,
make it the first character
(following a possible `\fB^\fR'),
or (AREs only) precede it with `\fB\e\fR'.
Alternatively, for `\fB\-\fR',
make it the last character,
or the second endpoint of a range.
To use a literal
\fB\-\fR
as the first endpoint of a range,
make it a collating element
or (AREs only) precede it with `\fB\e\fR'.
With the exception of these, some combinations using
\fB[\fR
(see next
paragraphs), and escapes,
all other special characters lose their
special significance within a bracket expression.
.PP
Within a bracket expression, a collating element (a character,
a multi-character sequence that collates as if it were a single character,
or a collating-sequence name for either)
enclosed in
\fB[.\fR and \fB.]\fR
stands for the
sequence of characters of that collating element.
The sequence is a single element of the bracket expression's list.
A bracket expression in a locale that has
multi-character collating elements
can thus match more than one character.
.VS 8.2
So (insidiously), a bracket expression that starts with \fB^\fR
can match multi-character collating elements even if none of them
appear in the bracket expression!
(\fINote:\fR Tcl currently has no multi-character collating elements.
This information is only for illustration.)
.PP
For example, assume the collating sequence includes a \fBch\fR
multi-character collating element.
Then the RE \fB[[.ch.]]*c\fR (zero or more \fBch\fP's followed by \fBc\fP)
matches the first five characters of `\fBchchcc\fR'.
Also, the RE \fB[^c]b\fR matches all of `\fBchb\fR'
(because \fB[^c]\fR matches the multi-character \fBch\fR).
.VE 8.2
.PP
Within a bracket expression, a collating element enclosed in
\fB[=\fR
and
\fB=]\fR
is an equivalence class, standing for the sequences of characters
of all collating elements equivalent to that one, including itself.
(If there are no other equivalent collating elements,
the treatment is as if the enclosing delimiters were `\fB[.\fR'\&
and `\fB.]\fR'.)
For example, if
\fBo\fR
and
\fB\o'o^'\fR
are the members of an equivalence class,
then `\fB[[=o=]]\fR', `\fB[[=\o'o^'=]]\fR',
and `\fB[o\o'o^']\fR'\&
are all synonymous.
An equivalence class may not be an endpoint
of a range.
.VS 8.2
(\fINote:\fR
Tcl currently implements only the Unicode locale.
It doesn't define any equivalence classes.
The examples above are just illustrations.)
.VE 8.2
.PP
Within a bracket expression, the name of a \fIcharacter class\fR enclosed
in
\fB[:\fR
and
\fB:]\fR
stands for the list of all characters
(not all collating elements!)
belonging to that
class.
Standard character classes are:
.PP
.RS
.ne 5
.nf
.ta 3c
\fBalpha\fR A letter.
\fBupper\fR An upper-case letter.
\fBlower\fR A lower-case letter.
\fBdigit\fR A decimal digit.
\fBxdigit\fR A hexadecimal digit.
\fBalnum\fR An alphanumeric (letter or digit).
\fBprint\fR An alphanumeric (same as alnum).
\fBblank\fR A space or tab character.
\fBspace\fR A character producing white space in displayed text.
\fBpunct\fR A punctuation character.
\fBgraph\fR A character with a visible representation.
\fBcntrl\fR A control character.
.fi
.RE
.PP
A locale may provide others.
.VS 8.2
(Note that the current Tcl implementation has only one locale:
the Unicode locale.)
.VE 8.2
A character class may not be used as an endpoint of a range.
.PP
There are two special cases of bracket expressions:
the bracket expressions
\fB[[:<:]]\fR
and
\fB[[:>:]]\fR
are constraints, matching empty strings at
the beginning and end of a word respectively.
'\" note, discussion of escapes below references this definition of word
A word is defined as a sequence of
word characters
that is neither preceded nor followed by
word characters.
A word character is an
\fIalnum\fR
character
or an underscore
(\fB_\fR).
These special bracket expressions are deprecated;
users of AREs should use constraint escapes instead (see below).
.SH ESCAPES
Escapes (AREs only), which begin with a
\fB\e\fR
followed by an alphanumeric character,
come in several varieties:
character entry, class shorthands, constraint escapes, and back references.
A
\fB\e\fR
followed by an alphanumeric character but not constituting
a valid escape is illegal in AREs.
In EREs, there are no escapes:
outside a bracket expression,
a
\fB\e\fR
followed by an alphanumeric character merely stands for that
character as an ordinary character,
and inside a bracket expression,
\fB\e\fR
is an ordinary character.
(The latter is the one actual incompatibility between EREs and AREs.)
.PP
Character-entry escapes (AREs only) exist to make it easier to specify
non-printing and otherwise inconvenient characters in REs:
.RS 2
.TP 5
\fB\ea\fR
alert (bell) character, as in C
.TP
\fB\eb\fR
backspace, as in C
.TP
\fB\eB\fR
synonym for
\fB\e\fR
to help reduce backslash doubling in some
applications where there are multiple levels of backslash processing
.TP
\fB\ec\fIX\fR
(where X is any character) the character whose
low-order 5 bits are the same as those of
\fIX\fR,
and whose other bits are all zero
.TP
\fB\ee\fR
the character whose collating-sequence name
is `\fBESC\fR',
or failing that, the character with octal value 033
.TP
\fB\ef\fR
formfeed, as in C
.TP
\fB\en\fR
newline, as in C
.TP
\fB\er\fR
carriage return, as in C
.TP
\fB\et\fR
horizontal tab, as in C
.TP
\fB\eu\fIwxyz\fR
(where
\fIwxyz\fR
is exactly four hexadecimal digits)
the Unicode character
\fBU+\fIwxyz\fR
in the local byte ordering
.TP
\fB\eU\fIstuvwxyz\fR
(where
\fIstuvwxyz\fR
is exactly eight hexadecimal digits)
reserved for a somewhat-hypothetical Unicode extension to 32 bits
.TP
\fB\ev\fR
vertical tab, as in C
are all available.
.TP
\fB\ex\fIhhh\fR
(where
\fIhhh\fR
is any sequence of hexadecimal digits)
the character whose hexadecimal value is
\fB0x\fIhhh\fR
(a single character no matter how many hexadecimal digits are used).
.TP
\fB\e0\fR
the character whose value is
\fB0\fR
.TP
\fB\e\fIxy\fR
(where
\fIxy\fR
is exactly two octal digits,
and is not a
\fIback reference\fR (see below))
the character whose octal value is
\fB0\fIxy\fR
.TP
\fB\e\fIxyz\fR
(where
\fIxyz\fR
is exactly three octal digits,
and is not a
back reference (see below))
the character whose octal value is
\fB0\fIxyz\fR
.RE
.PP
Hexadecimal digits are `\fB0\fR'-`\fB9\fR', `\fBa\fR'-`\fBf\fR',
and `\fBA\fR'-`\fBF\fR'.
Octal digits are `\fB0\fR'-`\fB7\fR'.
.PP
The character-entry escapes are always taken as ordinary characters.
For example,
\fB\e135\fR
is
\fB]\fR
in ASCII,
but
\fB\e135\fR
does not terminate a bracket expression.
Beware, however, that some applications (e.g., C compilers) interpret
such sequences themselves before the regular-expression package
gets to see them, which may require doubling (quadrupling, etc.) the `\fB\e\fR'.
.PP
Class-shorthand escapes (AREs only) provide shorthands for certain commonly-used
character classes:
.RS 2
.TP 10
\fB\ed\fR
\fB[[:digit:]]\fR
.TP
\fB\es\fR
\fB[[:space:]]\fR
.TP
\fB\ew\fR
\fB[[:alnum:]_]\fR
(note underscore)
.TP
\fB\eD\fR
\fB[^[:digit:]]\fR
.TP
\fB\eS\fR
\fB[^[:space:]]\fR
.TP
\fB\eW\fR
\fB[^[:alnum:]_]\fR
(note underscore)
.RE
.PP
Within bracket expressions, `\fB\ed\fR', `\fB\es\fR',
and `\fB\ew\fR'\&
lose their outer brackets,
and `\fB\eD\fR', `\fB\eS\fR',
and `\fB\eW\fR'\&
are illegal.
.VS 8.2
(So, for example, \fB[a-c\ed]\fR is equivalent to \fB[a-c[:digit:]]\fR.
Also, \fB[a-c\eD]\fR, which is equivalent to \fB[a-c^[:digit:]]\fR, is illegal.)
.VE 8.2
.PP
A constraint escape (AREs only) is a constraint,
matching the empty string if specific conditions are met,
written as an escape:
.RS 2
.TP 6
\fB\eA\fR
matches only at the beginning of the string
(see MATCHING, below, for how this differs from `\fB^\fR')
.TP
\fB\em\fR
matches only at the beginning of a word
.TP
\fB\eM\fR
matches only at the end of a word
.TP
\fB\ey\fR
matches only at the beginning or end of a word
.TP
\fB\eY\fR
matches only at a point that is not the beginning or end of a word
.TP
\fB\eZ\fR
matches only at the end of the string
(see MATCHING, below, for how this differs from `\fB$\fR')
.TP
\fB\e\fIm\fR
(where
\fIm\fR
is a nonzero digit) a \fIback reference\fR, see below
.TP
\fB\e\fImnn\fR
(where
\fIm\fR
is a nonzero digit, and
\fInn\fR
is some more digits,
and the decimal value
\fImnn\fR
is not greater than the number of closing capturing parentheses seen so far)
a \fIback reference\fR, see below
.RE
.PP
A word is defined as in the specification of
\fB[[:<:]]\fR
and
\fB[[:>:]]\fR
above.
Constraint escapes are illegal within bracket expressions.
.PP
A back reference (AREs only) matches the same string matched by the parenthesized
subexpression specified by the number,
so that (e.g.)
\fB([bc])\e1\fR
matches
\fBbb\fR
or
\fBcc\fR
but not `\fBbc\fR'.
The subexpression must entirely precede the back reference in the RE.
Subexpressions are numbered in the order of their leading parentheses.
Non-capturing parentheses do not define subexpressions.
.PP
There is an inherent historical ambiguity between octal character-entry
escapes and back references, which is resolved by heuristics,
as hinted at above.
A leading zero always indicates an octal escape.
A single non-zero digit, not followed by another digit,
is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back
reference if it comes after a suitable subexpression
(i.e. the number is in the legal range for a back reference),
and otherwise is taken as octal.
.SH "METASYNTAX"
In addition to the main syntax described above, there are some special
forms and miscellaneous syntactic facilities available.
.PP
Normally the flavor of RE being used is specified by
application-dependent means.
However, this can be overridden by a \fIdirector\fR.
If an RE of any flavor begins with `\fB***:\fR',
the rest of the RE is an ARE.
If an RE of any flavor begins with `\fB***=\fR',
the rest of the RE is taken to be a literal string,
with all characters considered ordinary characters.
.PP
An ARE may begin with \fIembedded options\fR:
a sequence
\fB(?\fIxyz\fB)\fR
(where
\fIxyz\fR
is one or more alphabetic characters)
specifies options affecting the rest of the RE.
These supplement, and can override,
any options specified by the application.
The available option letters are:
.RS 2
.TP 3
\fBb\fR
rest of RE is a BRE
.TP 3
\fBc\fR
case-sensitive matching (usual default)
.TP 3
\fBe\fR
rest of RE is an ERE
.TP 3
\fBi\fR
case-insensitive matching (see MATCHING, below)
.TP 3
\fBm\fR
historical synonym for
\fBn\fR
.TP 3
\fBn\fR
newline-sensitive matching (see MATCHING, below)
.TP 3
\fBp\fR
partial newline-sensitive matching (see MATCHING, below)
.TP 3
\fBq\fR
rest of RE is a literal (``quoted'') string, all ordinary characters
.TP 3
\fBs\fR
non-newline-sensitive matching (usual default)
.TP 3
\fBt\fR
tight syntax (usual default; see below)
.TP 3
\fBw\fR
inverse partial newline-sensitive (``weird'') matching (see MATCHING, below)
.TP 3
\fBx\fR
expanded syntax (see below)
.RE
.PP
Embedded options take effect at the
\fB)\fR
terminating the sequence.
They are available only at the start of an ARE,
and may not be used later within it.
.PP
In addition to the usual (\fItight\fR) RE syntax, in which all characters are
significant, there is an \fIexpanded\fR syntax,
available in all flavors of RE
with the \fB-expanded\fR switch, or in AREs with the embedded x option.
In the expanded syntax,
white-space characters are ignored
and all characters between a
\fB#\fR
and the following newline (or the end of the RE) are ignored,
permitting paragraphing and commenting a complex RE.
There are three exceptions to that basic rule:
.RS 2
.PP
a white-space character or `\fB#\fR' preceded by `\fB\e\fR' is retained
.PP
white space or `\fB#\fR' within a bracket expression is retained
.PP
white space and comments are illegal within multi-character symbols
like the ARE `\fB(?:\fR' or the BRE `\fB\e(\fR'
.RE
.PP
Expanded-syntax white-space characters are blank, tab, newline, and
.VS 8.2
any character that belongs to the \fIspace\fR character class.
.VE 8.2
.PP
Finally, in an ARE,
outside bracket expressions, the sequence `\fB(?#\fIttt\fB)\fR'
(where
\fIttt\fR
is any text not containing a `\fB)\fR')
is a comment,
completely ignored.
Again, this is not allowed between the characters of
multi-character symbols like `\fB(?:\fR'.
Such comments are more a historical artifact than a useful facility,
and their use is deprecated;
use the expanded syntax instead.
.PP
\fINone\fR of these metasyntax extensions is available if the application
(or an initial
\fB***=\fR
director)
has specified that the user's input be treated as a literal string
rather than as an RE.
.SH MATCHING
In the event that an RE could match more than one substring of a given
string,
the RE matches the one starting earliest in the string.
If the RE could match more than one substring starting at that point,
its choice is determined by its \fIpreference\fR:
either the longest substring, or the shortest.
.PP
Most atoms, and all constraints, have no preference.
A parenthesized RE has the same preference (possibly none) as the RE.
A quantified atom with quantifier
\fB{\fIm\fB}\fR
or
\fB{\fIm\fB}?\fR
has the same preference (possibly none) as the atom itself.
A quantified atom with other normal quantifiers (including
\fB{\fIm\fB,\fIn\fB}\fR
with
\fIm\fR
equal to
\fIn\fR)
prefers longest match.
A quantified atom with other non-greedy quantifiers (including
\fB{\fIm\fB,\fIn\fB}?\fR
with
\fIm\fR
equal to
\fIn\fR)
prefers shortest match.
A branch has the same preference as the first quantified atom in it
which has a preference.
An RE consisting of two or more branches connected by the
\fB|\fR
operator prefers longest match.
.PP
Subject to the constraints imposed by the rules for matching the whole RE,
subexpressions also match the longest or shortest possible substrings,
based on their preferences,
with subexpressions starting earlier in the RE taking priority over
ones starting later.
Note that outer subexpressions thus take priority over
their component subexpressions.
.PP
Note that the quantifiers
\fB{1,1}\fR
and
\fB{1,1}?\fR
can be used to force longest and shortest preference, respectively,
on a subexpression or a whole RE.
.PP
Match lengths are measured in characters, not collating elements.
An empty string is considered longer than no match at all.
For example,
\fBbb*\fR
matches the three middle characters of `\fBabbbc\fR',
\fB(week|wee)(night|knights)\fR
matches all ten characters of `\fBweeknights\fR',
when
\fB(.*).*\fR
is matched against
\fBabc\fR
the parenthesized subexpression
matches all three characters, and
when
\fB(a*)*\fR
is matched against
\fBbc\fR
both the whole RE and the parenthesized
subexpression match an empty string.
.PP
If case-independent matching is specified,
the effect is much as if all case distinctions had vanished from the
alphabet.
When an alphabetic that exists in multiple cases appears as an
ordinary character outside a bracket expression, it is effectively
transformed into a bracket expression containing both cases,
so that
\fBx\fR
becomes `\fB[xX]\fR'.
When it appears inside a bracket expression, all case counterparts
of it are added to the bracket expression, so that
\fB[x]\fR
becomes
\fB[xX]\fR
and
\fB[^x]\fR
becomes `\fB[^xX]\fR'.
.PP
If newline-sensitive matching is specified, \fB.\fR
and bracket expressions using
\fB^\fR
will never match the newline character
(so that matches will never cross newlines unless the RE
explicitly arranges it)
and
\fB^\fR
and
\fB$\fR
will match the empty string after and before a newline
respectively, in addition to matching at beginning and end of string
respectively.
ARE
\fB\eA\fR
and
\fB\eZ\fR
continue to match beginning or end of string \fIonly\fR.
.PP
If partial newline-sensitive matching is specified,
this affects \fB.\fR
and bracket expressions
as with newline-sensitive matching, but not
\fB^\fR
and `\fB$\fR'.
.PP
If inverse partial newline-sensitive matching is specified,
this affects
\fB^\fR
and
\fB$\fR
as with
newline-sensitive matching,
but not \fB.\fR
and bracket expressions.
This isn't very useful but is provided for symmetry.
.SH "LIMITS AND COMPATIBILITY"
No particular limit is imposed on the length of REs.
Programs intended to be highly portable should not employ REs longer
than 256 bytes,
as a POSIX-compliant implementation can refuse to accept such REs.
.PP
The only feature of AREs that is actually incompatible with
POSIX EREs is that
\fB\e\fR
does not lose its special
significance inside bracket expressions.
All other ARE features use syntax which is illegal or has
undefined or unspecified effects in POSIX EREs;
the
\fB***\fR
syntax of directors likewise is outside the POSIX
syntax for both BREs and EREs.
.PP
Many of the ARE extensions are borrowed from Perl, but some have
been changed to clean them up, and a few Perl extensions are not present.
Incompatibilities of note include `\fB\eb\fR', `\fB\eB\fR',
the lack of special treatment for a trailing newline,
the addition of complemented bracket expressions to the things
affected by newline-sensitive matching,
the restrictions on parentheses and back references in lookahead constraints,
and the longest/shortest-match (rather than first-match) matching semantics.
.PP
The matching rules for REs containing both normal and non-greedy quantifiers
have changed since early beta-test versions of this package.
(The new rules are much simpler and cleaner,
but don't work as hard at guessing the user's real intentions.)
.PP
Henry Spencer's original 1986 \fIregexp\fR package,
still in widespread use (e.g., in pre-8.1 releases of Tcl),
implemented an early version of today's EREs.
There are four incompatibilities between \fIregexp\fR's near-EREs
(`RREs' for short) and AREs.
In roughly increasing order of significance:
.PP
.RS
In AREs,
\fB\e\fR
followed by an alphanumeric character is either an
escape or an error,
while in RREs, it was just another way of writing the
alphanumeric.
This should not be a problem because there was no reason to write
such a sequence in RREs.
.PP
\fB{\fR
followed by a digit in an ARE is the beginning of a bound,
while in RREs,
\fB{\fR
was always an ordinary character.
Such sequences should be rare,
and will often result in an error because following characters
will not look like a valid bound.
.PP
In AREs,
\fB\e\fR
remains a special character within `\fB[\|]\fR',
so a literal
\fB\e\fR
within
\fB[\|]\fR
must be written `\fB\e\e\fR'.
\fB\e\e\fR
also gives a literal
\fB\e\fR
within
\fB[\|]\fR
in RREs,
but only truly paranoid programmers routinely doubled the backslash.
.PP
AREs report the longest/shortest match for the RE,
rather than the first found in a specified search order.
This may affect some RREs which were written in the expectation that
the first match would be reported.
(The careful crafting of RREs to optimize the search order for fast
matching is obsolete (AREs examine all possible matches
in parallel, and their performance is largely insensitive to their
complexity) but cases where the search order was exploited to deliberately
find a match which was \fInot\fR the longest/shortest will need rewriting.)
.RE
.SH "BASIC REGULAR EXPRESSIONS"
BREs differ from EREs in several respects. `\fB|\fR', `\fB+\fR',
and
\fB?\fR
are ordinary characters and there is no equivalent
for their functionality.
The delimiters for bounds are
\fB\e{\fR
and `\fB\e}\fR',
with
\fB{\fR
and
\fB}\fR
by themselves ordinary characters.
The parentheses for nested subexpressions are
\fB\e(\fR
and `\fB\e)\fR',
with
\fB(\fR
and
\fB)\fR
by themselves ordinary characters.
\fB^\fR
is an ordinary character except at the beginning of the
RE or the beginning of a parenthesized subexpression,
\fB$\fR
is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression,
and
\fB*\fR
is an ordinary character if it appears at the beginning of the
RE or the beginning of a parenthesized subexpression
(after a possible leading `\fB^\fR').
Finally,
single-digit back references are available,
and
\fB\e<\fR
and
\fB\e>\fR
are synonyms for
\fB[[:<:]]\fR
and
\fB[[:>:]]\fR
respectively;
no other escapes are available.
.SH "SEE ALSO"
RegExp(3), regexp(n), regsub(n), lsearch(n), switch(n), text(n)
.SH KEYWORDS
match, regular expression, string

View File

@@ -1,780 +0,0 @@
/*
* colorings of characters
* This file is #included by regcomp.c.
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Header$
*
*
* Note that there are some incestuous relationships between this code and
* NFA arc maintenance, which perhaps ought to be cleaned up sometime.
*/
#define CISERR() VISERR(cm->v)
#define CERR(e) VERR(cm->v, (e))
/*
* initcm - set up new colormap
*/
static void
initcm(struct vars * v,
struct colormap * cm)
{
int i;
int j;
union tree *t;
union tree *nextt;
struct colordesc *cd;
cm->magic = CMMAGIC;
cm->v = v;
cm->ncds = NINLINECDS;
cm->cd = cm->cdspace;
cm->max = 0;
cm->free = 0;
cd = cm->cd; /* cm->cd[WHITE] */
cd->sub = NOSUB;
cd->arcs = NULL;
cd->flags = 0;
cd->nchrs = CHR_MAX - CHR_MIN + 1;
/* upper levels of tree */
for (t = &cm->tree[0], j = NBYTS - 1; j > 0; t = nextt, j--)
{
nextt = t + 1;
for (i = BYTTAB - 1; i >= 0; i--)
t->tptr[i] = nextt;
}
/* bottom level is solid white */
t = &cm->tree[NBYTS - 1];
for (i = BYTTAB - 1; i >= 0; i--)
t->tcolor[i] = WHITE;
cd->block = t;
}
/*
* freecm - free dynamically-allocated things in a colormap
*/
static void
freecm(struct colormap * cm)
{
size_t i;
union tree *cb;
cm->magic = 0;
if (NBYTS > 1)
cmtreefree(cm, cm->tree, 0);
for (i = 1; i <= cm->max; i++) /* skip WHITE */
if (!UNUSEDCOLOR(&cm->cd[i]))
{
cb = cm->cd[i].block;
if (cb != NULL)
FREE(cb);
}
if (cm->cd != cm->cdspace)
FREE(cm->cd);
}
/*
* cmtreefree - free a non-terminal part of a colormap tree
*/
static void
cmtreefree(struct colormap * cm,
union tree * tree,
int level) /* level number (top == 0) of this block */
{
int i;
union tree *t;
union tree *fillt = &cm->tree[level + 1];
union tree *cb;
assert(level < NBYTS - 1); /* this level has pointers */
for (i = BYTTAB - 1; i >= 0; i--)
{
t = tree->tptr[i];
assert(t != NULL);
if (t != fillt)
{
if (level < NBYTS - 2)
{ /* more pointer blocks below */
cmtreefree(cm, t, level + 1);
FREE(t);
}
else
{ /* color block below */
cb = cm->cd[t->tcolor[0]].block;
if (t != cb) /* not a solid block */
FREE(t);
}
}
}
}
/*
* setcolor - set the color of a character in a colormap
*/
static color /* previous color */
setcolor(struct colormap * cm,
chr c,
pcolor co)
{
uchr uc = c;
int shift;
int level;
int b;
int bottom;
union tree *t;
union tree *newt;
union tree *fillt;
union tree *lastt;
union tree *cb;
color prev;
assert(cm->magic == CMMAGIC);
if (CISERR() || co == COLORLESS)
return COLORLESS;
t = cm->tree;
for (level = 0, shift = BYTBITS * (NBYTS - 1); shift > 0;
level++, shift -= BYTBITS)
{
b = (uc >> shift) & BYTMASK;
lastt = t;
t = lastt->tptr[b];
assert(t != NULL);
fillt = &cm->tree[level + 1];
bottom = (shift <= BYTBITS) ? 1 : 0;
cb = (bottom) ? cm->cd[t->tcolor[0]].block : fillt;
if (t == fillt || t == cb)
{ /* must allocate a new block */
newt = (union tree *) MALLOC((bottom) ?
sizeof(struct colors) : sizeof(struct ptrs));
if (newt == NULL)
{
CERR(REG_ESPACE);
return COLORLESS;
}
if (bottom)
memcpy(VS(newt->tcolor), VS(t->tcolor),
BYTTAB * sizeof(color));
else
memcpy(VS(newt->tptr), VS(t->tptr),
BYTTAB * sizeof(union tree *));
t = newt;
lastt->tptr[b] = t;
}
}
b = uc & BYTMASK;
prev = t->tcolor[b];
t->tcolor[b] = (color) co;
return prev;
}
/*
* maxcolor - report largest color number in use
*/
static color
maxcolor(struct colormap * cm)
{
if (CISERR())
return COLORLESS;
return (color) cm->max;
}
/*
* newcolor - find a new color (must be subject of setcolor at once)
* Beware: may relocate the colordescs.
*/
static color /* COLORLESS for error */
newcolor(struct colormap * cm)
{
struct colordesc *cd;
struct colordesc *new;
size_t n;
if (CISERR())
return COLORLESS;
if (cm->free != 0)
{
assert(cm->free > 0);
assert((size_t) cm->free < cm->ncds);
cd = &cm->cd[cm->free];
assert(UNUSEDCOLOR(cd));
assert(cd->arcs == NULL);
cm->free = cd->sub;
}
else if (cm->max < cm->ncds - 1)
{
cm->max++;
cd = &cm->cd[cm->max];
}
else
{
/* oops, must allocate more */
n = cm->ncds * 2;
if (cm->cd == cm->cdspace)
{
new = (struct colordesc *) MALLOC(n *
sizeof(struct colordesc));
if (new != NULL)
memcpy(VS(new), VS(cm->cdspace), cm->ncds *
sizeof(struct colordesc));
}
else
new = (struct colordesc *) REALLOC(cm->cd,
n * sizeof(struct colordesc));
if (new == NULL)
{
CERR(REG_ESPACE);
return COLORLESS;
}
cm->cd = new;
cm->ncds = n;
assert(cm->max < cm->ncds - 1);
cm->max++;
cd = &cm->cd[cm->max];
}
cd->nchrs = 0;
cd->sub = NOSUB;
cd->arcs = NULL;
cd->flags = 0;
cd->block = NULL;
return (color) (cd - cm->cd);
}
/*
* freecolor - free a color (must have no arcs or subcolor)
*/
static void
freecolor(struct colormap * cm,
pcolor co)
{
struct colordesc *cd = &cm->cd[co];
color pco,
nco; /* for freelist scan */
assert(co >= 0);
if (co == WHITE)
return;
assert(cd->arcs == NULL);
assert(cd->sub == NOSUB);
assert(cd->nchrs == 0);
cd->flags = FREECOL;
if (cd->block != NULL)
{
FREE(cd->block);
cd->block = NULL; /* just paranoia */
}
if ((size_t) co == cm->max)
{
while (cm->max > WHITE && UNUSEDCOLOR(&cm->cd[cm->max]))
cm->max--;
assert(cm->free >= 0);
while ((size_t) cm->free > cm->max)
cm->free = cm->cd[cm->free].sub;
if (cm->free > 0)
{
assert(cm->free < cm->max);
pco = cm->free;
nco = cm->cd[pco].sub;
while (nco > 0)
if ((size_t) nco > cm->max)
{
/* take this one out of freelist */
nco = cm->cd[nco].sub;
cm->cd[pco].sub = nco;
}
else
{
assert(nco < cm->max);
pco = nco;
nco = cm->cd[pco].sub;
}
}
}
else
{
cd->sub = cm->free;
cm->free = (color) (cd - cm->cd);
}
}
/*
* pseudocolor - allocate a false color, to be managed by other means
*/
static color
pseudocolor(struct colormap * cm)
{
color co;
co = newcolor(cm);
if (CISERR())
return COLORLESS;
cm->cd[co].nchrs = 1;
cm->cd[co].flags = PSEUDO;
return co;
}
/*
* subcolor - allocate a new subcolor (if necessary) to this chr
*/
static color
subcolor(struct colormap * cm, chr c)
{
color co; /* current color of c */
color sco; /* new subcolor */
co = GETCOLOR(cm, c);
sco = newsub(cm, co);
if (CISERR())
return COLORLESS;
assert(sco != COLORLESS);
if (co == sco) /* already in an open subcolor */
return co; /* rest is redundant */
cm->cd[co].nchrs--;
cm->cd[sco].nchrs++;
setcolor(cm, c, sco);
return sco;
}
/*
* newsub - allocate a new subcolor (if necessary) for a color
*/
static color
newsub(struct colormap * cm,
pcolor co)
{
color sco; /* new subcolor */
sco = cm->cd[co].sub;
if (sco == NOSUB)
{ /* color has no open subcolor */
if (cm->cd[co].nchrs == 1) /* optimization */
return co;
sco = newcolor(cm); /* must create subcolor */
if (sco == COLORLESS)
{
assert(CISERR());
return COLORLESS;
}
cm->cd[co].sub = sco;
cm->cd[sco].sub = sco; /* open subcolor points to self */
}
assert(sco != NOSUB);
return sco;
}
/*
* subrange - allocate new subcolors to this range of chrs, fill in arcs
*/
static void
subrange(struct vars * v,
chr from,
chr to,
struct state * lp,
struct state * rp)
{
uchr uf;
int i;
assert(from <= to);
/* first, align "from" on a tree-block boundary */
uf = (uchr) from;
i = (int) (((uf + BYTTAB - 1) & (uchr) ~BYTMASK) - uf);
for (; from <= to && i > 0; i--, from++)
newarc(v->nfa, PLAIN, subcolor(v->cm, from), lp, rp);
if (from > to) /* didn't reach a boundary */
return;
/* deal with whole blocks */
for (; to - from >= BYTTAB; from += BYTTAB)
subblock(v, from, lp, rp);
/* clean up any remaining partial table */
for (; from <= to; from++)
newarc(v->nfa, PLAIN, subcolor(v->cm, from), lp, rp);
}
/*
* subblock - allocate new subcolors for one tree block of chrs, fill in arcs
*/
static void
subblock(struct vars * v,
chr start, /* first of BYTTAB chrs */
struct state * lp,
struct state * rp)
{
uchr uc = start;
struct colormap *cm = v->cm;
int shift;
int level;
int i;
int b;
union tree *t;
union tree *cb;
union tree *fillt;
union tree *lastt;
int previ;
int ndone;
color co;
color sco;
assert((uc % BYTTAB) == 0);
/* find its color block, making new pointer blocks as needed */
t = cm->tree;
fillt = NULL;
for (level = 0, shift = BYTBITS * (NBYTS - 1); shift > 0;
level++, shift -= BYTBITS)
{
b = (uc >> shift) & BYTMASK;
lastt = t;
t = lastt->tptr[b];
assert(t != NULL);
fillt = &cm->tree[level + 1];
if (t == fillt && shift > BYTBITS)
{ /* need new ptr block */
t = (union tree *) MALLOC(sizeof(struct ptrs));
if (t == NULL)
{
CERR(REG_ESPACE);
return;
}
memcpy(VS(t->tptr), VS(fillt->tptr),
BYTTAB * sizeof(union tree *));
lastt->tptr[b] = t;
}
}
/* special cases: fill block or solid block */
co = t->tcolor[0];
cb = cm->cd[co].block;
if (t == fillt || t == cb)
{
/* either way, we want a subcolor solid block */
sco = newsub(cm, co);
t = cm->cd[sco].block;
if (t == NULL)
{ /* must set it up */
t = (union tree *) MALLOC(sizeof(struct colors));
if (t == NULL)
{
CERR(REG_ESPACE);
return;
}
for (i = 0; i < BYTTAB; i++)
t->tcolor[i] = sco;
cm->cd[sco].block = t;
}
/* find loop must have run at least once */
lastt->tptr[b] = t;
newarc(v->nfa, PLAIN, sco, lp, rp);
cm->cd[co].nchrs -= BYTTAB;
cm->cd[sco].nchrs += BYTTAB;
return;
}
/* general case, a mixed block to be altered */
i = 0;
while (i < BYTTAB)
{
co = t->tcolor[i];
sco = newsub(cm, co);
newarc(v->nfa, PLAIN, sco, lp, rp);
previ = i;
do
{
t->tcolor[i++] = sco;
} while (i < BYTTAB && t->tcolor[i] == co);
ndone = i - previ;
cm->cd[co].nchrs -= ndone;
cm->cd[sco].nchrs += ndone;
}
}
/*
* okcolors - promote subcolors to full colors
*/
static void
okcolors(struct nfa * nfa,
struct colormap * cm)
{
struct colordesc *cd;
struct colordesc *end = CDEND(cm);
struct colordesc *scd;
struct arc *a;
color co;
color sco;
for (cd = cm->cd, co = 0; cd < end; cd++, co++)
{
sco = cd->sub;
if (UNUSEDCOLOR(cd) || sco == NOSUB)
{
/* has no subcolor, no further action */
}
else if (sco == co)
{
/* is subcolor, let parent deal with it */
}
else if (cd->nchrs == 0)
{
/* parent empty, its arcs change color to subcolor */
cd->sub = NOSUB;
scd = &cm->cd[sco];
assert(scd->nchrs > 0);
assert(scd->sub == sco);
scd->sub = NOSUB;
while ((a = cd->arcs) != NULL)
{
assert(a->co == co);
/* uncolorchain(cm, a); */
cd->arcs = a->colorchain;
a->co = sco;
/* colorchain(cm, a); */
a->colorchain = scd->arcs;
scd->arcs = a;
}
freecolor(cm, co);
}
else
{
/* parent's arcs must gain parallel subcolor arcs */
cd->sub = NOSUB;
scd = &cm->cd[sco];
assert(scd->nchrs > 0);
assert(scd->sub == sco);
scd->sub = NOSUB;
for (a = cd->arcs; a != NULL; a = a->colorchain)
{
assert(a->co == co);
newarc(nfa, a->type, sco, a->from, a->to);
}
}
}
}
/*
* colorchain - add this arc to the color chain of its color
*/
static void
colorchain(struct colormap * cm,
struct arc * a)
{
struct colordesc *cd = &cm->cd[a->co];
a->colorchain = cd->arcs;
cd->arcs = a;
}
/*
* uncolorchain - delete this arc from the color chain of its color
*/
static void
uncolorchain(struct colormap * cm,
struct arc * a)
{
struct colordesc *cd = &cm->cd[a->co];
struct arc *aa;
aa = cd->arcs;
if (aa == a) /* easy case */
cd->arcs = a->colorchain;
else
{
for (; aa != NULL && aa->colorchain != a; aa = aa->colorchain)
continue;
assert(aa != NULL);
aa->colorchain = a->colorchain;
}
a->colorchain = NULL; /* paranoia */
}
/*
* singleton - is this character in its own color?
*/
static int /* predicate */
singleton(struct colormap * cm,
chr c)
{
color co; /* color of c */
co = GETCOLOR(cm, c);
if (cm->cd[co].nchrs == 1 && cm->cd[co].sub == NOSUB)
return 1;
return 0;
}
/*
* rainbow - add arcs of all full colors (but one) between specified states
*/
static void
rainbow(struct nfa * nfa,
struct colormap * cm,
int type,
pcolor but, /* COLORLESS if no exceptions */
struct state * from,
struct state * to)
{
struct colordesc *cd;
struct colordesc *end = CDEND(cm);
color co;
for (cd = cm->cd, co = 0; cd < end && !CISERR(); cd++, co++)
if (!UNUSEDCOLOR(cd) && cd->sub != co && co != but &&
!(cd->flags & PSEUDO))
newarc(nfa, type, co, from, to);
}
/*
* colorcomplement - add arcs of complementary colors
*
* The calling sequence ought to be reconciled with cloneouts().
*/
static void
colorcomplement(struct nfa * nfa,
struct colormap * cm,
int type,
struct state * of, /* complements of this guy's PLAIN
* outarcs */
struct state * from,
struct state * to)
{
struct colordesc *cd;
struct colordesc *end = CDEND(cm);
color co;
assert(of != from);
for (cd = cm->cd, co = 0; cd < end && !CISERR(); cd++, co++)
if (!UNUSEDCOLOR(cd) && !(cd->flags & PSEUDO))
if (findarc(of, PLAIN, co) == NULL)
newarc(nfa, type, co, from, to);
}
#ifdef REG_DEBUG
/*
* dumpcolors - debugging output
*/
static void
dumpcolors(struct colormap * cm,
FILE *f)
{
struct colordesc *cd;
struct colordesc *end;
color co;
chr c;
char *has;
fprintf(f, "max %ld\n", (long) cm->max);
if (NBYTS > 1)
fillcheck(cm, cm->tree, 0, f);
end = CDEND(cm);
for (cd = cm->cd + 1, co = 1; cd < end; cd++, co++) /* skip 0 */
if (!UNUSEDCOLOR(cd))
{
assert(cd->nchrs > 0);
has = (cd->block != NULL) ? "#" : "";
if (cd->flags & PSEUDO)
fprintf(f, "#%2ld%s(ps): ", (long) co, has);
else
fprintf(f, "#%2ld%s(%2d): ", (long) co,
has, cd->nchrs);
/* it's hard to do this more efficiently */
for (c = CHR_MIN; c < CHR_MAX; c++)
if (GETCOLOR(cm, c) == co)
dumpchr(c, f);
assert(c == CHR_MAX);
if (GETCOLOR(cm, c) == co)
dumpchr(c, f);
fprintf(f, "\n");
}
}
/*
* fillcheck - check proper filling of a tree
*/
static void
fillcheck(struct colormap * cm,
union tree * tree,
int level, /* level number (top == 0) of this block */
FILE *f)
{
int i;
union tree *t;
union tree *fillt = &cm->tree[level + 1];
assert(level < NBYTS - 1); /* this level has pointers */
for (i = BYTTAB - 1; i >= 0; i--)
{
t = tree->tptr[i];
if (t == NULL)
fprintf(f, "NULL found in filled tree!\n");
else if (t == fillt)
{
}
else if (level < NBYTS - 2) /* more pointer blocks below */
fillcheck(cm, t, level + 1, f);
}
}
/*
* dumpchr - print a chr
*
* Kind of char-centric but works well enough for debug use.
*/
static void
dumpchr(chr c,
FILE *f)
{
if (c == '\\')
fprintf(f, "\\\\");
else if (c > ' ' && c <= '~')
putc((char) c, f);
else
fprintf(f, "\\u%04lx", (long) c);
}
#endif /* REG_DEBUG */

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,51 +0,0 @@
/* ========= begin header generated by ./mkh ========= */
#ifdef __cplusplus
extern "C" {
#endif
/* === regcomp.c === */
static void p_ere(register struct parse *p, int stop);
static void p_ere_exp(register struct parse *p);
static void p_str(register struct parse *p);
static void p_bre(register struct parse *p, register int end1, register int end2);
static int p_simp_re(register struct parse *p, int starordinary);
static int p_count(register struct parse *p);
static void p_bracket(register struct parse *p);
static void p_b_term(register struct parse *p, register cset *cs);
static void p_b_cclass(register struct parse *p, register cset *cs);
static void p_b_eclass(register struct parse *p, register cset *cs);
static char p_b_symbol(register struct parse *p);
static char p_b_coll_elem(register struct parse *p, int endc);
static char othercase(int ch);
static void bothcases(register struct parse *p, int ch);
static void ordinary(register struct parse *p, register int ch);
static void nonnewline(register struct parse *p);
static void repeat(register struct parse *p, sopno start, int from, int to);
static int seterr(register struct parse *p, int e);
static cset *allocset(register struct parse *p);
static void freeset(register struct parse *p, register cset *cs);
static int freezeset(register struct parse *p, register cset *cs);
static int firstch(register struct parse *p, register cset *cs);
static int nch(register struct parse *p, register cset *cs);
static void mcadd(register struct parse *p, register cset *cs, register char *cp);
static void mcsub(register cset *cs, register char *cp);
static int mcin(register cset *cs, register char *cp);
static char *mcfind(register cset *cs, register char *cp);
static void mcinvert(register struct parse *p, register cset *cs);
static void mccase(register struct parse *p, register cset *cs);
static int isinsets(register struct re_guts *g, int c);
static int samesets(register struct re_guts *g, int c1, int c2);
static void categorize(struct parse *p, register struct re_guts *g);
static sopno dupl(register struct parse *p, sopno start, sopno finish);
static void doemit(register struct parse *p, sop op, size_t opnd);
static void doinsert(register struct parse *p, sop op, size_t opnd, sopno pos);
static void dofwd(register struct parse *p, sopno pos, sop value);
static void enlarge(register struct parse *p, sopno size);
static void stripsnug(register struct parse *p, register struct re_guts *g);
static void findmust(register struct parse *p, register struct re_guts *g);
static sopno pluscount(register struct parse *p, register struct re_guts *g);
#ifdef __cplusplus
}
#endif
/* ========= end header generated by ./mkh ========= */

View File

@@ -1,699 +0,0 @@
/*
* DFA routines
* This file is #included by regexec.c.
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Header$
*
*/
/*
* longest - longest-preferred matching engine
*/
static chr * /* endpoint, or NULL */
longest(struct vars * v, /* used only for debug and exec flags */
struct dfa * d,
chr *start, /* where the match should start */
chr *stop, /* match must end at or before here */
int *hitstopp) /* record whether hit v->stop, if non-NULL */
{
chr *cp;
chr *realstop = (stop == v->stop) ? stop : stop + 1;
color co;
struct sset *css;
struct sset *ss;
chr *post;
int i;
struct colormap *cm = d->cm;
/* initialize */
css = initialize(v, d, start);
cp = start;
if (hitstopp != NULL)
*hitstopp = 0;
/* startup */
FDEBUG(("+++ startup +++\n"));
if (cp == v->start)
{
co = d->cnfa->bos[(v->eflags & REG_NOTBOL) ? 0 : 1];
FDEBUG(("color %ld\n", (long) co));
}
else
{
co = GETCOLOR(cm, *(cp - 1));
FDEBUG(("char %c, color %ld\n", (char) *(cp - 1), (long) co));
}
css = miss(v, d, css, co, cp, start);
if (css == NULL)
return NULL;
css->lastseen = cp;
/* main loop */
if (v->eflags & REG_FTRACE)
while (cp < realstop)
{
FDEBUG(("+++ at c%d +++\n", css - d->ssets));
co = GETCOLOR(cm, *cp);
FDEBUG(("char %c, color %ld\n", (char) *cp, (long) co));
ss = css->outs[co];
if (ss == NULL)
{
ss = miss(v, d, css, co, cp + 1, start);
if (ss == NULL)
break; /* NOTE BREAK OUT */
}
cp++;
ss->lastseen = cp;
css = ss;
}
else
while (cp < realstop)
{
co = GETCOLOR(cm, *cp);
ss = css->outs[co];
if (ss == NULL)
{
ss = miss(v, d, css, co, cp + 1, start);
if (ss == NULL)
break; /* NOTE BREAK OUT */
}
cp++;
ss->lastseen = cp;
css = ss;
}
/* shutdown */
FDEBUG(("+++ shutdown at c%d +++\n", css - d->ssets));
if (cp == v->stop && stop == v->stop)
{
if (hitstopp != NULL)
*hitstopp = 1;
co = d->cnfa->eos[(v->eflags & REG_NOTEOL) ? 0 : 1];
FDEBUG(("color %ld\n", (long) co));
ss = miss(v, d, css, co, cp, start);
/* special case: match ended at eol? */
if (ss != NULL && (ss->flags & POSTSTATE))
return cp;
else if (ss != NULL)
ss->lastseen = cp; /* to be tidy */
}
/* find last match, if any */
post = d->lastpost;
for (ss = d->ssets, i = d->nssused; i > 0; ss++, i--)
if ((ss->flags & POSTSTATE) && post != ss->lastseen &&
(post == NULL || post < ss->lastseen))
post = ss->lastseen;
if (post != NULL) /* found one */
return post - 1;
return NULL;
}
/*
* shortest - shortest-preferred matching engine
*/
static chr * /* endpoint, or NULL */
shortest(struct vars * v,
struct dfa * d,
chr *start, /* where the match should start */
chr *min, /* match must end at or after here */
chr *max, /* match must end at or before here */
chr **coldp, /* store coldstart pointer here, if
* nonNULL */
int *hitstopp) /* record whether hit v->stop, if non-NULL */
{
chr *cp;
chr *realmin = (min == v->stop) ? min : min + 1;
chr *realmax = (max == v->stop) ? max : max + 1;
color co;
struct sset *css;
struct sset *ss;
struct colormap *cm = d->cm;
/* initialize */
css = initialize(v, d, start);
cp = start;
if (hitstopp != NULL)
*hitstopp = 0;
/* startup */
FDEBUG(("--- startup ---\n"));
if (cp == v->start)
{
co = d->cnfa->bos[(v->eflags & REG_NOTBOL) ? 0 : 1];
FDEBUG(("color %ld\n", (long) co));
}
else
{
co = GETCOLOR(cm, *(cp - 1));
FDEBUG(("char %c, color %ld\n", (char) *(cp - 1), (long) co));
}
css = miss(v, d, css, co, cp, start);
if (css == NULL)
return NULL;
css->lastseen = cp;
ss = css;
/* main loop */
if (v->eflags & REG_FTRACE)
while (cp < realmax)
{
FDEBUG(("--- at c%d ---\n", css - d->ssets));
co = GETCOLOR(cm, *cp);
FDEBUG(("char %c, color %ld\n", (char) *cp, (long) co));
ss = css->outs[co];
if (ss == NULL)
{
ss = miss(v, d, css, co, cp + 1, start);
if (ss == NULL)
break; /* NOTE BREAK OUT */
}
cp++;
ss->lastseen = cp;
css = ss;
if ((ss->flags & POSTSTATE) && cp >= realmin)
break; /* NOTE BREAK OUT */
}
else
while (cp < realmax)
{
co = GETCOLOR(cm, *cp);
ss = css->outs[co];
if (ss == NULL)
{
ss = miss(v, d, css, co, cp + 1, start);
if (ss == NULL)
break; /* NOTE BREAK OUT */
}
cp++;
ss->lastseen = cp;
css = ss;
if ((ss->flags & POSTSTATE) && cp >= realmin)
break; /* NOTE BREAK OUT */
}
if (ss == NULL)
return NULL;
if (coldp != NULL) /* report last no-progress state set, if
* any */
*coldp = lastcold(v, d);
if ((ss->flags & POSTSTATE) && cp > min)
{
assert(cp >= realmin);
cp--;
}
else if (cp == v->stop && max == v->stop)
{
co = d->cnfa->eos[(v->eflags & REG_NOTEOL) ? 0 : 1];
FDEBUG(("color %ld\n", (long) co));
ss = miss(v, d, css, co, cp, start);
/* match might have ended at eol */
if ((ss == NULL || !(ss->flags & POSTSTATE)) && hitstopp != NULL)
*hitstopp = 1;
}
if (ss == NULL || !(ss->flags & POSTSTATE))
return NULL;
return cp;
}
/*
* lastcold - determine last point at which no progress had been made
*/
static chr * /* endpoint, or NULL */
lastcold(struct vars * v,
struct dfa * d)
{
struct sset *ss;
chr *nopr;
int i;
nopr = d->lastnopr;
if (nopr == NULL)
nopr = v->start;
for (ss = d->ssets, i = d->nssused; i > 0; ss++, i--)
if ((ss->flags & NOPROGRESS) && nopr < ss->lastseen)
nopr = ss->lastseen;
return nopr;
}
/*
* newdfa - set up a fresh DFA
*/
static struct dfa *
newdfa(struct vars * v,
struct cnfa * cnfa,
struct colormap * cm,
struct smalldfa * small) /* preallocated space, may be NULL */
{
struct dfa *d;
size_t nss = cnfa->nstates * 2;
int wordsper = (cnfa->nstates + UBITS - 1) / UBITS;
struct smalldfa *smallwas = small;
assert(cnfa != NULL && cnfa->nstates != 0);
if (nss <= FEWSTATES && cnfa->ncolors <= FEWCOLORS)
{
assert(wordsper == 1);
if (small == NULL)
{
small = (struct smalldfa *) MALLOC(
sizeof(struct smalldfa));
if (small == NULL)
{
ERR(REG_ESPACE);
return NULL;
}
}
d = &small->dfa;
d->ssets = small->ssets;
d->statesarea = small->statesarea;
d->work = &d->statesarea[nss];
d->outsarea = small->outsarea;
d->incarea = small->incarea;
d->cptsmalloced = 0;
d->mallocarea = (smallwas == NULL) ? (char *) small : NULL;
}
else
{
d = (struct dfa *) MALLOC(sizeof(struct dfa));
if (d == NULL)
{
ERR(REG_ESPACE);
return NULL;
}
d->ssets = (struct sset *) MALLOC(nss * sizeof(struct sset));
d->statesarea = (unsigned *) MALLOC((nss + WORK) * wordsper *
sizeof(unsigned));
d->work = &d->statesarea[nss * wordsper];
d->outsarea = (struct sset **) MALLOC(nss * cnfa->ncolors *
sizeof(struct sset *));
d->incarea = (struct arcp *) MALLOC(nss * cnfa->ncolors *
sizeof(struct arcp));
d->cptsmalloced = 1;
d->mallocarea = (char *) d;
if (d->ssets == NULL || d->statesarea == NULL ||
d->outsarea == NULL || d->incarea == NULL)
{
freedfa(d);
ERR(REG_ESPACE);
return NULL;
}
}
d->nssets = (v->eflags & REG_SMALL) ? 7 : nss;
d->nssused = 0;
d->nstates = cnfa->nstates;
d->ncolors = cnfa->ncolors;
d->wordsper = wordsper;
d->cnfa = cnfa;
d->cm = cm;
d->lastpost = NULL;
d->lastnopr = NULL;
d->search = d->ssets;
/* initialization of sset fields is done as needed */
return d;
}
/*
* freedfa - free a DFA
*/
static void
freedfa(struct dfa * d)
{
if (d->cptsmalloced)
{
if (d->ssets != NULL)
FREE(d->ssets);
if (d->statesarea != NULL)
FREE(d->statesarea);
if (d->outsarea != NULL)
FREE(d->outsarea);
if (d->incarea != NULL)
FREE(d->incarea);
}
if (d->mallocarea != NULL)
FREE(d->mallocarea);
}
/*
* hash - construct a hash code for a bitvector
*
* There are probably better ways, but they're more expensive.
*/
static unsigned
hash(unsigned *uv,
int n)
{
int i;
unsigned h;
h = 0;
for (i = 0; i < n; i++)
h ^= uv[i];
return h;
}
/*
* initialize - hand-craft a cache entry for startup, otherwise get ready
*/
static struct sset *
initialize(struct vars * v, /* used only for debug flags */
struct dfa * d,
chr *start)
{
struct sset *ss;
int i;
/* is previous one still there? */
if (d->nssused > 0 && (d->ssets[0].flags & STARTER))
ss = &d->ssets[0];
else
{ /* no, must (re)build it */
ss = getvacant(v, d, start, start);
for (i = 0; i < d->wordsper; i++)
ss->states[i] = 0;
BSET(ss->states, d->cnfa->pre);
ss->hash = HASH(ss->states, d->wordsper);
assert(d->cnfa->pre != d->cnfa->post);
ss->flags = STARTER | LOCKED | NOPROGRESS;
/* lastseen dealt with below */
}
for (i = 0; i < d->nssused; i++)
d->ssets[i].lastseen = NULL;
ss->lastseen = start; /* maybe untrue, but harmless */
d->lastpost = NULL;
d->lastnopr = NULL;
return ss;
}
/*
* miss - handle a cache miss
*/
static struct sset * /* NULL if goes to empty set */
miss(struct vars * v, /* used only for debug flags */
struct dfa * d,
struct sset * css,
pcolor co,
chr *cp, /* next chr */
chr *start) /* where the attempt got started */
{
struct cnfa *cnfa = d->cnfa;
int i;
unsigned h;
struct carc *ca;
struct sset *p;
int ispost;
int noprogress;
int gotstate;
int dolacons;
int sawlacons;
/* for convenience, we can be called even if it might not be a miss */
if (css->outs[co] != NULL)
{
FDEBUG(("hit\n"));
return css->outs[co];
}
FDEBUG(("miss\n"));
/* first, what set of states would we end up in? */
for (i = 0; i < d->wordsper; i++)
d->work[i] = 0;
ispost = 0;
noprogress = 1;
gotstate = 0;
for (i = 0; i < d->nstates; i++)
if (ISBSET(css->states, i))
for (ca = cnfa->states[i] + 1; ca->co != COLORLESS; ca++)
if (ca->co == co)
{
BSET(d->work, ca->to);
gotstate = 1;
if (ca->to == cnfa->post)
ispost = 1;
if (!cnfa->states[ca->to]->co)
noprogress = 0;
FDEBUG(("%d -> %d\n", i, ca->to));
}
dolacons = (gotstate) ? (cnfa->flags & HASLACONS) : 0;
sawlacons = 0;
while (dolacons)
{ /* transitive closure */
dolacons = 0;
for (i = 0; i < d->nstates; i++)
if (ISBSET(d->work, i))
for (ca = cnfa->states[i] + 1; ca->co != COLORLESS;
ca++)
{
if (ca->co <= cnfa->ncolors)
continue; /* NOTE CONTINUE */
sawlacons = 1;
if (ISBSET(d->work, ca->to))
continue; /* NOTE CONTINUE */
if (!lacon(v, cnfa, cp, ca->co))
continue; /* NOTE CONTINUE */
BSET(d->work, ca->to);
dolacons = 1;
if (ca->to == cnfa->post)
ispost = 1;
if (!cnfa->states[ca->to]->co)
noprogress = 0;
FDEBUG(("%d :> %d\n", i, ca->to));
}
}
if (!gotstate)
return NULL;
h = HASH(d->work, d->wordsper);
/* next, is that in the cache? */
for (p = d->ssets, i = d->nssused; i > 0; p++, i--)
if (HIT(h, d->work, p, d->wordsper))
{
FDEBUG(("cached c%d\n", p - d->ssets));
break; /* NOTE BREAK OUT */
}
if (i == 0)
{ /* nope, need a new cache entry */
p = getvacant(v, d, cp, start);
assert(p != css);
for (i = 0; i < d->wordsper; i++)
p->states[i] = d->work[i];
p->hash = h;
p->flags = (ispost) ? POSTSTATE : 0;
if (noprogress)
p->flags |= NOPROGRESS;
/* lastseen to be dealt with by caller */
}
if (!sawlacons)
{ /* lookahead conds. always cache miss */
FDEBUG(("c%d[%d]->c%d\n", css - d->ssets, co, p - d->ssets));
css->outs[co] = p;
css->inchain[co] = p->ins;
p->ins.ss = css;
p->ins.co = (color) co;
}
return p;
}
/*
* lacon - lookahead-constraint checker for miss()
*/
static int /* predicate: constraint satisfied? */
lacon(struct vars * v,
struct cnfa * pcnfa, /* parent cnfa */
chr *cp,
pcolor co) /* "color" of the lookahead constraint */
{
int n;
struct subre *sub;
struct dfa *d;
struct smalldfa sd;
chr *end;
n = co - pcnfa->ncolors;
assert(n < v->g->nlacons && v->g->lacons != NULL);
FDEBUG(("=== testing lacon %d\n", n));
sub = &v->g->lacons[n];
d = newdfa(v, &sub->cnfa, &v->g->cmap, &sd);
if (d == NULL)
{
ERR(REG_ESPACE);
return 0;
}
end = longest(v, d, cp, v->stop, (int *) NULL);
freedfa(d);
FDEBUG(("=== lacon %d match %d\n", n, (end != NULL)));
return (sub->subno) ? (end != NULL) : (end == NULL);
}
/*
* getvacant - get a vacant state set
* This routine clears out the inarcs and outarcs, but does not otherwise
* clear the innards of the state set -- that's up to the caller.
*/
static struct sset *
getvacant(struct vars * v, /* used only for debug flags */
struct dfa * d,
chr *cp,
chr *start)
{
int i;
struct sset *ss;
struct sset *p;
struct arcp ap;
struct arcp lastap;
color co;
ss = pickss(v, d, cp, start);
assert(!(ss->flags & LOCKED));
/* clear out its inarcs, including self-referential ones */
ap = ss->ins;
while ((p = ap.ss) != NULL)
{
co = ap.co;
FDEBUG(("zapping c%d's %ld outarc\n", p - d->ssets, (long) co));
p->outs[co] = NULL;
ap = p->inchain[co];
p->inchain[co].ss = NULL; /* paranoia */
}
ss->ins.ss = NULL;
/* take it off the inarc chains of the ssets reached by its outarcs */
for (i = 0; i < d->ncolors; i++)
{
p = ss->outs[i];
assert(p != ss); /* not self-referential */
if (p == NULL)
continue; /* NOTE CONTINUE */
FDEBUG(("del outarc %d from c%d's in chn\n", i, p - d->ssets));
if (p->ins.ss == ss && p->ins.co == i)
p->ins = ss->inchain[i];
else
{
assert(p->ins.ss != NULL);
for (ap = p->ins; ap.ss != NULL &&
!(ap.ss == ss && ap.co == i);
ap = ap.ss->inchain[ap.co])
lastap = ap;
assert(ap.ss != NULL);
lastap.ss->inchain[lastap.co] = ss->inchain[i];
}
ss->outs[i] = NULL;
ss->inchain[i].ss = NULL;
}
/* if ss was a success state, may need to remember location */
if ((ss->flags & POSTSTATE) && ss->lastseen != d->lastpost &&
(d->lastpost == NULL || d->lastpost < ss->lastseen))
d->lastpost = ss->lastseen;
/* likewise for a no-progress state */
if ((ss->flags & NOPROGRESS) && ss->lastseen != d->lastnopr &&
(d->lastnopr == NULL || d->lastnopr < ss->lastseen))
d->lastnopr = ss->lastseen;
return ss;
}
/*
* pickss - pick the next stateset to be used
*/
static struct sset *
pickss(struct vars * v, /* used only for debug flags */
struct dfa * d,
chr *cp,
chr *start)
{
int i;
struct sset *ss;
struct sset *end;
chr *ancient;
/* shortcut for cases where cache isn't full */
if (d->nssused < d->nssets)
{
i = d->nssused;
d->nssused++;
ss = &d->ssets[i];
FDEBUG(("new c%d\n", i));
/* set up innards */
ss->states = &d->statesarea[i * d->wordsper];
ss->flags = 0;
ss->ins.ss = NULL;
ss->ins.co = WHITE; /* give it some value */
ss->outs = &d->outsarea[i * d->ncolors];
ss->inchain = &d->incarea[i * d->ncolors];
for (i = 0; i < d->ncolors; i++)
{
ss->outs[i] = NULL;
ss->inchain[i].ss = NULL;
}
return ss;
}
/* look for oldest, or old enough anyway */
if (cp - start > d->nssets * 2 / 3) /* oldest 33% are expendable */
ancient = cp - d->nssets * 2 / 3;
else
ancient = start;
for (ss = d->search, end = &d->ssets[d->nssets]; ss < end; ss++)
if ((ss->lastseen == NULL || ss->lastseen < ancient) &&
!(ss->flags & LOCKED))
{
d->search = ss + 1;
FDEBUG(("replacing c%d\n", ss - d->ssets));
return ss;
}
for (ss = d->ssets, end = d->search; ss < end; ss++)
if ((ss->lastseen == NULL || ss->lastseen < ancient) &&
!(ss->flags & LOCKED))
{
d->search = ss + 1;
FDEBUG(("replacing c%d\n", ss - d->ssets));
return ss;
}
/* nobody's old enough?!? -- something's really wrong */
FDEBUG(("can't find victim to replace!\n"));
assert(NOTREACHED);
ERR(REG_ASSERT);
return d->ssets;
}

View File

@@ -1,109 +0,0 @@
/*
* regerror - error-code expansion
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "regguts.h"
/* unknown-error explanation */
static char unk[] = "*** unknown regex error code 0x%x ***";
/* struct to map among codes, code names, and explanations */
static struct rerr {
int code;
char *name;
char *explain;
} rerrs[] = {
/* the actual table is built from regex.h */
# include "regerrs.h"
{ -1, "", "oops" }, /* explanation special-cased in code */
};
/*
- regerror - the interface to error numbers
*/
/* ARGSUSED */
size_t /* actual space needed (including NUL) */
regerror(errcode, preg, errbuf, errbuf_size)
int errcode; /* error code, or REG_ATOI or REG_ITOA */
CONST regex_t *preg; /* associated regex_t (unused at present) */
char *errbuf; /* result buffer (unless errbuf_size==0) */
size_t errbuf_size; /* available space in errbuf, can be 0 */
{
struct rerr *r;
char *msg;
char convbuf[sizeof(unk)+50]; /* 50 = plenty for int */
size_t len;
int icode;
switch (errcode) {
case REG_ATOI: /* convert name to number */
for (r = rerrs; r->code >= 0; r++)
if (strcmp(r->name, errbuf) == 0)
break;
sprintf(convbuf, "%d", r->code); /* -1 for unknown */
msg = convbuf;
break;
case REG_ITOA: /* convert number to name */
icode = atoi(errbuf); /* not our problem if this fails */
for (r = rerrs; r->code >= 0; r++)
if (r->code == icode)
break;
if (r->code >= 0)
msg = r->name;
else { /* unknown; tell him the number */
sprintf(convbuf, "REG_%u", (unsigned)icode);
msg = convbuf;
}
break;
default: /* a real, normal error code */
for (r = rerrs; r->code >= 0; r++)
if (r->code == errcode)
break;
if (r->code >= 0)
msg = r->explain;
else { /* unknown; say so */
sprintf(convbuf, unk, errcode);
msg = convbuf;
}
break;
}
len = strlen(msg) + 1; /* space needed, including NUL */
if (errbuf_size > 0) {
if (errbuf_size > len)
strcpy(errbuf, msg);
else { /* truncate to fit */
strncpy(errbuf, msg, errbuf_size-1);
errbuf[errbuf_size-1] = '\0';
}
}
return len;
}

View File

@@ -1,12 +0,0 @@
/* ========= begin header generated by ./mkh ========= */
#ifdef __cplusplus
extern "C" {
#endif
/* === regerror.c === */
static char *regatoi(const regex_t *preg, char *localbuf);
#ifdef __cplusplus
}
#endif
/* ========= end header generated by ./mkh ========= */

View File

@@ -1,75 +0,0 @@
/*
* $Id$
*/
{
REG_OKAY, "REG_OKAY", "no errors detected"
},
{
REG_NOMATCH, "REG_NOMATCH", "failed to match"
},
{
REG_BADPAT, "REG_BADPAT", "invalid regexp (reg version 0.8)"
},
{
REG_ECOLLATE, "REG_ECOLLATE", "invalid collating element"
},
{
REG_ECTYPE, "REG_ECTYPE", "invalid character class"
},
{
REG_EESCAPE, "REG_EESCAPE", "invalid escape \\ sequence"
},
{
REG_ESUBREG, "REG_ESUBREG", "invalid backreference number"
},
{
REG_EBRACK, "REG_EBRACK", "brackets [] not balanced"
},
{
REG_EPAREN, "REG_EPAREN", "parentheses () not balanced"
},
{
REG_EBRACE, "REG_EBRACE", "braces {} not balanced"
},
{
REG_BADBR, "REG_BADBR", "invalid repetition count(s)"
},
{
REG_ERANGE, "REG_ERANGE", "invalid character range"
},
{
REG_ESPACE, "REG_ESPACE", "out of memory"
},
{
REG_BADRPT, "REG_BADRPT", "quantifier operand invalid"
},
{
REG_ASSERT, "REG_ASSERT", "\"can't happen\" -- you found a bug"
},
{
REG_INVARG, "REG_INVARG", "invalid argument to regex function"
},
{
REG_MIXED, "REG_MIXED", "character widths of regex and string differ"
},
{
REG_BADOPT, "REG_BADOPT", "invalid embedded option"
},

View File

@@ -1,509 +0,0 @@
.TH REGEX 3 "25 Sept 1997"
.BY "Henry Spencer"
.de ZR
.\" one other place knows this name: the SEE ALSO section
.IR regex (7) \\$1
..
.SH NAME
regcomp, regexec, regerror, regfree \- regular-expression library
.SH SYNOPSIS
.ft B
.\".na
#include <sys/types.h>
.br
#include <regex.h>
.HP 10
int regcomp(regex_t\ *preg, const\ char\ *pattern, int\ cflags);
.HP
int\ regexec(const\ regex_t\ *preg, const\ char\ *string,
size_t\ nmatch, regmatch_t\ pmatch[], int\ eflags);
.HP
size_t\ regerror(int\ errcode, const\ regex_t\ *preg,
char\ *errbuf, size_t\ errbuf_size);
.HP
void\ regfree(regex_t\ *preg);
.\".ad
.ft
.SH DESCRIPTION
These routines implement POSIX 1003.2 regular expressions (``RE''s);
see
.ZR .
.I Regcomp
compiles an RE written as a string into an internal form,
.I regexec
matches that internal form against a string and reports results,
.I regerror
transforms error codes from either into human-readable messages,
and
.I regfree
frees any dynamically-allocated storage used by the internal form
of an RE.
.PP
The header
.I <regex.h>
declares two structure types,
.I regex_t
and
.IR regmatch_t ,
the former for compiled internal forms and the latter for match reporting.
It also declares the four functions,
a type
.IR regoff_t ,
and a number of constants with names starting with ``REG_''.
.PP
.I Regcomp
compiles the regular expression contained in the
.I pattern
string,
subject to the flags in
.IR cflags ,
and places the results in the
.I regex_t
structure pointed to by
.IR preg .
.I Cflags
is the bitwise OR of zero or more of the following flags:
.IP REG_EXTENDED \w'REG_EXTENDED'u+2n
Compile modern (``extended'') REs,
rather than the obsolete (``basic'') REs that
are the default.
.IP REG_BASIC
This is a synonym for 0,
provided as a counterpart to REG_EXTENDED to improve readability.
This is an extension,
compatible with but not specified by POSIX 1003.2,
and should be used with
caution in software intended to be portable to other systems.
.IP REG_NOSPEC
Compile with recognition of all special characters turned off.
All characters are thus considered ordinary,
so the ``RE'' is a literal string.
This is an extension,
compatible with but not specified by POSIX 1003.2,
and should be used with
caution in software intended to be portable to other systems.
REG_EXTENDED and REG_NOSPEC may not be used
in the same call to
.IR regcomp .
.IP REG_ICASE
Compile for matching that ignores upper/lower case distinctions.
See
.ZR .
.IP REG_NOSUB
Compile for matching that need only report success or failure,
not what was matched.
.IP REG_NEWLINE
Compile for newline-sensitive matching.
By default, newline is a completely ordinary character with no special
meaning in either REs or strings.
With this flag,
`[^' bracket expressions and `.' never match newline,
a `^' anchor matches the null string after any newline in the string
in addition to its normal function,
and the `$' anchor matches the null string before any newline in the
string in addition to its normal function.
.IP REG_PEND
The regular expression ends,
not at the first NUL,
but just before the character pointed to by the
.I re_endp
member of the structure pointed to by
.IR preg .
The
.I re_endp
member is of type
.IR const\ char\ * .
This flag permits inclusion of NULs in the RE;
they are considered ordinary characters.
This is an extension,
compatible with but not specified by POSIX 1003.2,
and should be used with
caution in software intended to be portable to other systems.
.PP
When successful,
.I regcomp
returns 0 and fills in the structure pointed to by
.IR preg .
One member of that structure
(other than
.IR re_endp )
is publicized:
.IR re_nsub ,
of type
.IR size_t ,
contains the number of parenthesized subexpressions within the RE
(except that the value of this member is undefined if the
REG_NOSUB flag was used).
If
.I regcomp
fails, it returns a non-zero error code;
see DIAGNOSTICS.
.PP
.I Regexec
matches the compiled RE pointed to by
.I preg
against the
.IR string ,
subject to the flags in
.IR eflags ,
and reports results using
.IR nmatch ,
.IR pmatch ,
and the returned value.
The RE must have been compiled by a previous invocation of
.IR regcomp .
The compiled form is not altered during execution of
.IR regexec ,
so a single compiled RE can be used simultaneously by multiple threads.
.PP
By default,
the NUL-terminated string pointed to by
.I string
is considered to be the text of an entire line,
with the NUL indicating the end of the line.
(That is,
any other end-of-line marker is considered to have been removed
and replaced by the NUL.)
The
.I eflags
argument is the bitwise OR of zero or more of the following flags:
.IP REG_NOTBOL \w'REG_STARTEND'u+2n
The first character of
the string
is not the beginning of a line, so the `^' anchor should not match before it.
This does not affect the behavior of newlines under REG_NEWLINE.
.IP REG_NOTEOL
The NUL terminating
the string
does not end a line, so the `$' anchor should not match before it.
This does not affect the behavior of newlines under REG_NEWLINE.
.IP REG_STARTEND
The string is considered to start at
\fIstring\fR\ + \fIpmatch\fR[0].\fIrm_so\fR
and to have a terminating NUL located at
\fIstring\fR\ + \fIpmatch\fR[0].\fIrm_eo\fR
(there need not actually be a NUL at that location),
regardless of the value of
.IR nmatch .
See below for the definition of
.IR pmatch
and
.IR nmatch .
This is an extension,
compatible with but not specified by POSIX 1003.2,
and should be used with
caution in software intended to be portable to other systems.
Note that a non-zero \fIrm_so\fR does not imply REG_NOTBOL;
REG_STARTEND affects only the location of the string,
not how it is matched.
.PP
See
.ZR
for a discussion of what is matched in situations where an RE or a
portion thereof could match any of several substrings of
.IR string .
.PP
Normally,
.I regexec
returns 0 for success and the non-zero code REG_NOMATCH for failure.
Other non-zero error codes may be returned in exceptional situations;
see DIAGNOSTICS.
.PP
If REG_NOSUB was specified in the compilation of the RE,
or if
.I nmatch
is 0,
.I regexec
ignores the
.I pmatch
argument (but see below for the case where REG_STARTEND is specified).
Otherwise,
.I pmatch
points to an array of
.I nmatch
structures of type
.IR regmatch_t .
Such a structure has at least the members
.I rm_so
and
.IR rm_eo ,
both of type
.I regoff_t
(a signed arithmetic type at least as large as an
.I off_t
and a
.IR ssize_t ),
containing respectively the offset of the first character of a substring
and the offset of the first character after the end of the substring.
Offsets are measured from the beginning of the
.I string
argument given to
.IR regexec .
An empty substring is denoted by equal offsets,
both indicating the character following the empty substring.
.PP
The 0th member of the
.I pmatch
array is filled in to indicate what substring of
.I string
was matched by the entire RE.
Remaining members report what substring was matched by parenthesized
subexpressions within the RE;
member
.I i
reports subexpression
.IR i ,
with subexpressions counted (starting at 1) by the order of their opening
parentheses in the RE, left to right.
Unused entries in the array\(emcorresponding either to subexpressions that
did not participate in the match at all, or to subexpressions that do not
exist in the RE (that is, \fIi\fR\ > \fIpreg\fR\->\fIre_nsub\fR)\(emhave both
.I rm_so
and
.I rm_eo
set to \-1.
If a subexpression participated in the match several times,
the reported substring is the last one it matched.
(Note, as an example in particular, that when the RE `(b*)+' matches `bbb',
the parenthesized subexpression matches the three `b's and then
an infinite number of empty strings following the last `b',
so the reported substring is one of the empties.)
.PP
If REG_STARTEND is specified,
.I pmatch
must point to at least one
.I regmatch_t
(even if
.I nmatch
is 0 or REG_NOSUB was specified),
to hold the input offsets for REG_STARTEND.
Use for output is still entirely controlled by
.IR nmatch ;
if
.I nmatch
is 0 or REG_NOSUB was specified,
the value of
.IR pmatch [0]
will not be changed by a successful
.IR regexec .
.PP
.I Regerror
maps a non-zero
.I errcode
from either
.I regcomp
or
.I regexec
to a human-readable, printable message.
If
.I preg
is non-NULL,
the error code should have arisen from use of
the
.I regex_t
pointed to by
.IR preg ,
and if the error code came from
.IR regcomp ,
it should have been the result from the most recent
.I regcomp
using that
.IR regex_t .
.RI ( Regerror
may be able to supply a more detailed message using information
from the
.IR regex_t .)
.I Regerror
places the NUL-terminated message into the buffer pointed to by
.IR errbuf ,
limiting the length (including the NUL) to at most
.I errbuf_size
bytes.
If the whole message won't fit,
as much of it as will fit before the terminating NUL is supplied.
In any case,
the returned value is the size of buffer needed to hold the whole
message (including terminating NUL).
If
.I errbuf_size
is 0,
.I errbuf
is ignored but the return value is still correct.
.PP
If the
.I errcode
given to
.I regerror
is first ORed with REG_ITOA,
the ``message'' that results is the printable name of the error code,
e.g. ``REG_NOMATCH'',
rather than an explanation thereof.
If
.I errcode
is REG_ATOI,
then
.I preg
shall be non-NULL and the
.I re_endp
member of the structure it points to
must point to the printable name of an error code;
in this case, the result in
.I errbuf
is the decimal digits of
the numeric value of the error code
(0 if the name is not recognized).
REG_ITOA and REG_ATOI are intended primarily as debugging facilities;
they are extensions,
compatible with but not specified by POSIX 1003.2,
and should be used with
caution in software intended to be portable to other systems.
Be warned also that they are considered experimental and changes are possible.
.PP
.I Regfree
frees any dynamically-allocated storage associated with the compiled RE
pointed to by
.IR preg .
The remaining
.I regex_t
is no longer a valid compiled RE
and the effect of supplying it to
.I regexec
or
.I regerror
is undefined.
.PP
None of these functions references global variables except for tables
of constants;
all are safe for use from multiple threads if the arguments are safe.
.SH IMPLEMENTATION CHOICES
There are a number of decisions that 1003.2 leaves up to the implementor,
either by explicitly saying ``undefined'' or by virtue of them being
forbidden by the RE grammar.
This implementation treats them as follows.
.PP
See
.ZR
for a discussion of the definition of case-independent matching.
.PP
There is no particular limit on the length of REs,
except insofar as memory is limited.
Memory usage is approximately linear in RE size, and largely insensitive
to RE complexity, except for bounded repetitions.
See BUGS for one short RE using them
that will run almost any system out of memory.
.PP
A backslashed character other than one specifically given a magic meaning
by 1003.2 (such magic meanings occur only in obsolete [``basic''] REs)
is taken as an ordinary character.
.PP
Any unmatched [ is a REG_EBRACK error.
.PP
Equivalence classes cannot begin or end bracket-expression ranges.
The endpoint of one range cannot begin another.
.PP
RE_DUP_MAX, the limit on repetition counts in bounded repetitions, is 255.
.PP
A repetition operator (?, *, +, or bounds) cannot follow another
repetition operator.
A repetition operator cannot begin an expression or subexpression
or follow `^' or `|'.
.PP
`|' cannot appear first or last in a (sub)expression or after another `|',
i.e. an operand of `|' cannot be an empty subexpression.
An empty parenthesized subexpression, `()', is legal and matches an
empty (sub)string.
An empty string is not a legal RE.
.PP
A `{' followed by a digit is considered the beginning of bounds for a
bounded repetition, which must then follow the syntax for bounds.
A `{' \fInot\fR followed by a digit is considered an ordinary character.
.PP
`^' and `$' beginning and ending subexpressions in obsolete (``basic'')
REs are anchors, not ordinary characters.
.SH SEE ALSO
grep(1), regex(7)
.PP
POSIX 1003.2, sections 2.8 (Regular Expression Notation)
and
B.5 (C Binding for Regular Expression Matching).
.SH DIAGNOSTICS
Non-zero error codes from
.I regcomp
and
.I regexec
include the following:
.PP
.nf
.ta \w'REG_ECOLLATE'u+3n
REG_NOMATCH regexec() failed to match
REG_BADPAT invalid regular expression
REG_ECOLLATE invalid collating element
REG_ECTYPE invalid character class
REG_EESCAPE \e applied to unescapable character
REG_ESUBREG invalid backreference number
REG_EBRACK brackets [ ] not balanced
REG_EPAREN parentheses ( ) not balanced
REG_EBRACE braces { } not balanced
REG_BADBR invalid repetition count(s) in { }
REG_ERANGE invalid character range in [ ]
REG_ESPACE ran out of memory
REG_BADRPT ?, *, or + operand invalid
REG_EMPTY empty (sub)expression
REG_ASSERT ``can't happen''\(emyou found a bug
REG_INVARG invalid argument, e.g. negative-length string
.fi
.SH HISTORY
Written by Henry Spencer,
henry@zoo.toronto.edu.
.SH BUGS
This is an alpha release with known defects.
Please report problems.
.PP
There is one known functionality bug.
The implementation of internationalization is incomplete:
the locale is always assumed to be the default one of 1003.2,
and only the collating elements etc. of that locale are available.
.PP
The back-reference code is subtle and doubts linger about its correctness
in complex cases.
.PP
.I Regexec
performance is poor.
This will improve with later releases.
.I Nmatch
exceeding 0 is expensive;
.I nmatch
exceeding 1 is worse.
.I Regexec
is largely insensitive to RE complexity \fIexcept\fR that back
references are massively expensive.
RE length does matter; in particular, there is a strong speed bonus
for keeping RE length under about 30 characters,
with most special characters counting roughly double.
.PP
.I Regcomp
implements bounded repetitions by macro expansion,
which is costly in time and space if counts are large
or bounded repetitions are nested.
An RE like, say,
`((((a{1,100}){1,100}){1,100}){1,100}){1,100}'
will (eventually) run almost any existing machine out of swap space.
.PP
There are suspected problems with response to obscure error conditions.
Notably,
certain kinds of internal overflow,
produced only by truly enormous REs or by multiply nested bounded repetitions,
are probably not handled well.
.PP
Due to a mistake in 1003.2, things like `a)b' are legal REs because `)' is
a special character only in the presence of a previous unmatched `('.
This can't be fixed until the spec is fixed.
.PP
The standard's definition of back references is vague.
For example, does
`a\e(\e(b\e)*\e2\e)*d' match `abbbd'?
Until the standard is clarified,
behavior in such cases should not be relied on.
.PP
The implementation of word-boundary matching is a bit of a kludge,
and bugs may lurk in combinations of word-boundary matching and anchoring.

View File

@@ -1,235 +0,0 @@
.TH REGEX 7 "25 Oct 1995"
.BY "Henry Spencer"
.SH NAME
regex \- POSIX 1003.2 regular expressions
.SH DESCRIPTION
Regular expressions (``RE''s),
as defined in POSIX 1003.2, come in two forms:
modern REs (roughly those of
.IR egrep ;
1003.2 calls these ``extended'' REs)
and obsolete REs (roughly those of
.IR ed ;
1003.2 ``basic'' REs).
Obsolete REs mostly exist for backward compatibility in some old programs;
they will be discussed at the end.
1003.2 leaves some aspects of RE syntax and semantics open;
`\(dg' marks decisions on these aspects that
may not be fully portable to other 1003.2 implementations.
.PP
A (modern) RE is one\(dg or more non-empty\(dg \fIbranches\fR,
separated by `|'.
It matches anything that matches one of the branches.
.PP
A branch is one\(dg or more \fIpieces\fR, concatenated.
It matches a match for the first, followed by a match for the second, etc.
.PP
A piece is an \fIatom\fR possibly followed
by a single\(dg `*', `+', `?', or \fIbound\fR.
An atom followed by `*' matches a sequence of 0 or more matches of the atom.
An atom followed by `+' matches a sequence of 1 or more matches of the atom.
An atom followed by `?' matches a sequence of 0 or 1 matches of the atom.
.PP
A \fIbound\fR is `{' followed by an unsigned decimal integer,
possibly followed by `,'
possibly followed by another unsigned decimal integer,
always followed by `}'.
The integers must lie between 0 and RE_DUP_MAX (255\(dg) inclusive,
and if there are two of them, the first may not exceed the second.
An atom followed by a bound containing one integer \fIi\fR
and no comma matches
a sequence of exactly \fIi\fR matches of the atom.
An atom followed by a bound
containing one integer \fIi\fR and a comma matches
a sequence of \fIi\fR or more matches of the atom.
An atom followed by a bound
containing two integers \fIi\fR and \fIj\fR matches
a sequence of \fIi\fR through \fIj\fR (inclusive) matches of the atom.
.PP
An atom is a regular expression enclosed in `()' (matching a match for the
regular expression),
an empty set of `()' (matching the null string)\(dg,
a \fIbracket expression\fR (see below), `.'
(matching any single character), `^' (matching the null string at the
beginning of a line), `$' (matching the null string at the
end of a line), a `\e' followed by one of the characters
`^.[$()|*+?{\e'
(matching that character taken as an ordinary character),
a `\e' followed by any other character\(dg
(matching that character taken as an ordinary character,
as if the `\e' had not been present\(dg),
or a single character with no other significance (matching that character).
A `{' followed by a character other than a digit is an ordinary
character, not the beginning of a bound\(dg.
It is illegal to end an RE with `\e'.
.PP
A \fIbracket expression\fR is a list of characters enclosed in `[]'.
It normally matches any single character from the list (but see below).
If the list begins with `^',
it matches any single character
(but see below) \fInot\fR from the rest of the list.
If two characters in the list are separated by `\-', this is shorthand
for the full \fIrange\fR of characters between those two (inclusive) in the
collating sequence,
e.g. `[0\-9]' in ASCII matches any decimal digit.
It is illegal\(dg for two ranges to share an
endpoint, e.g. `a\-c\-e'.
Ranges are very collating-sequence-dependent,
and portable programs should avoid relying on them.
.PP
To include a literal `]' in the list, make it the first character
(following a possible `^').
To include a literal `\-', make it the first or last character,
or the second endpoint of a range.
To use a literal `\-' as the first endpoint of a range,
enclose it in `[.' and `.]' to make it a collating element (see below).
With the exception of these and some combinations using `[' (see next
paragraphs), all other special characters, including `\e', lose their
special significance within a bracket expression.
.PP
Within a bracket expression, a collating element (a character,
a multi-character sequence that collates as if it were a single character,
or a collating-sequence name for either)
enclosed in `[.' and `.]' stands for the
sequence of characters of that collating element.
The sequence is a single element of the bracket expression's list.
A bracket expression containing a multi-character collating element
can thus match more than one character,
e.g. if the collating sequence includes a `ch' collating element,
then the RE `[[.ch.]]*c' matches the first five characters
of `chchcc'.
.PP
Within a bracket expression, a collating element enclosed in `[=' and
`=]' is an equivalence class, standing for the sequences of characters
of all collating elements equivalent to that one, including itself.
(If there are no other equivalent collating elements,
the treatment is as if the enclosing delimiters were `[.' and `.]'.)
For example, if o and \o'o^' are the members of an equivalence class,
then `[[=o=]]', `[[=\o'o^'=]]', and `[o\o'o^']' are all synonymous.
An equivalence class may not\(dg be an endpoint
of a range.
.PP
Within a bracket expression, the name of a \fIcharacter class\fR enclosed
in `[:' and `:]' stands for the list of all characters belonging to that
class.
Standard character class names are:
.PP
.RS
.nf
.ta 3c 6c 9c
alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit
.fi
.RE
.PP
These stand for the character classes defined in
.IR ctype (3).
A locale may provide others.
A character class may not be used as an endpoint of a range.
.PP
There are two special cases\(dg of bracket expressions:
the bracket expressions `[[:<:]]' and `[[:>:]]' match the null string at
the beginning and end of a word respectively.
A word is defined as a sequence of
word characters
which is neither preceded nor followed by
word characters.
A word character is an
.I alnum
character (as defined by
.IR ctype (3))
or an underscore.
This is an extension,
compatible with but not specified by POSIX 1003.2,
and should be used with
caution in software intended to be portable to other systems.
.PP
In the event that an RE could match more than one substring of a given
string,
the RE matches the one starting earliest in the string.
If the RE could match more than one substring starting at that point,
it matches the longest.
Subexpressions also match the longest possible substrings, subject to
the constraint that the whole match be as long as possible,
with subexpressions starting earlier in the RE taking priority over
ones starting later.
Note that higher-level subexpressions thus take priority over
their lower-level component subexpressions.
.PP
Match lengths are measured in characters, not collating elements.
A null string is considered longer than no match at all.
For example,
`bb*' matches the three middle characters of `abbbc',
`(wee|week)(knights|nights)' matches all ten characters of `weeknights',
when `(.*).*' is matched against `abc' the parenthesized subexpression
matches all three characters, and
when `(a*)*' is matched against `bc' both the whole RE and the parenthesized
subexpression match the null string.
.PP
If case-independent matching is specified,
the effect is much as if all case distinctions had vanished from the
alphabet.
When an alphabetic that exists in multiple cases appears as an
ordinary character outside a bracket expression, it is effectively
transformed into a bracket expression containing both cases,
e.g. `x' becomes `[xX]'.
When it appears inside a bracket expression, all case counterparts
of it are added to the bracket expression, so that (e.g.) `[x]'
becomes `[xX]' and `[^x]' becomes `[^xX]'.
.PP
No particular limit is imposed on the length of REs\(dg.
Programs intended to be portable should not employ REs longer
than 256 bytes,
as an implementation can refuse to accept such REs and remain
POSIX-compliant.
.PP
Obsolete (``basic'') regular expressions differ in several respects.
`|', `+', and `?' are ordinary characters and there is no equivalent
for their functionality.
The delimiters for bounds are `\e{' and `\e}',
with `{' and `}' by themselves ordinary characters.
The parentheses for nested subexpressions are `\e(' and `\e)',
with `(' and `)' by themselves ordinary characters.
`^' is an ordinary character except at the beginning of the
RE or\(dg the beginning of a parenthesized subexpression,
`$' is an ordinary character except at the end of the
RE or\(dg the end of a parenthesized subexpression,
and `*' is an ordinary character if it appears at the beginning of the
RE or the beginning of a parenthesized subexpression
(after a possible leading `^').
Finally, there is one new type of atom, a \fIback reference\fR:
`\e' followed by a non-zero decimal digit \fId\fR
matches the same sequence of characters
matched by the \fId\fRth parenthesized subexpression
(numbering subexpressions by the positions of their opening parentheses,
left to right),
so that (e.g.) `\e([bc]\e)\e1' matches `bb' or `cc' but not `bc'.
.SH SEE ALSO
regex(3)
.PP
POSIX 1003.2, section 2.8 (Regular Expression Notation).
.SH HISTORY
Written by Henry Spencer, based on the 1003.2 spec.
.SH BUGS
Having two kinds of REs is a botch.
.PP
The current 1003.2 spec says that `)' is an ordinary character in
the absence of an unmatched `(';
this was an unintentional result of a wording error,
and change is likely.
Avoid relying on it.
.PP
Back references are a dreadful botch,
posing major problems for efficient implementations.
They are also somewhat vaguely defined
(does
`a\e(\e(b\e)*\e2\e)*d' match `abbbd'?).
Avoid using them.
.PP
1003.2's specification of case-independent matching is vague.
The ``one case implies all cases'' definition given above
is current consensus among implementors as to the right interpretation.
.PP
The syntax for word boundaries is incredibly ugly.

View File

@@ -1,202 +0,0 @@
#ifndef _REGEX_H_
#define _REGEX_H_ /* never again */
/*
* regular expressions
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
/*
* Add your own defines, if needed, here.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef wxCHECK_GCC_VERSION
#define wxCHECK_GCC_VERSION( major, minor ) \
( defined(__GNUC__) && defined(__GNUC_MINOR__) \
&& ( ( __GNUC__ > (major) ) \
|| ( __GNUC__ == (major) && __GNUC_MINOR__ >= (minor) ) ) )
#endif
#if !wxUSE_UNICODE
# define wx_wchar char
#else // Unicode
#if (defined(__GNUC__) && !wxCHECK_GCC_VERSION(2, 96))
# define wx_wchar __WCHAR_TYPE__
#else // __WCHAR_TYPE__ and gcc < 2.96
// standard case
# define wx_wchar wchar_t
#endif // __WCHAR_TYPE__
#endif // ASCII/Unicode
/*
* interface types etc.
*/
/*
* regoff_t has to be large enough to hold either off_t or ssize_t,
* and must be signed; it's only a guess that long is suitable.
*/
typedef long regoff_t;
/*
* other interface types
*/
/* the biggie, a compiled RE (or rather, a front end to same) */
typedef struct
{
int re_magic; /* magic number */
size_t re_nsub; /* number of subexpressions */
long re_info; /* information about RE */
#define REG_UBACKREF 000001
#define REG_ULOOKAHEAD 000002
#define REG_UBOUNDS 000004
#define REG_UBRACES 000010
#define REG_UBSALNUM 000020
#define REG_UPBOTCH 000040
#define REG_UBBS 000100
#define REG_UNONPOSIX 000200
#define REG_UUNSPEC 000400
#define REG_UUNPORT 001000
#define REG_ULOCALE 002000
#define REG_UEMPTYMATCH 004000
#define REG_UIMPOSSIBLE 010000
#define REG_USHORTEST 020000
int re_csize; /* sizeof(character) */
char *re_endp; /* backward compatibility kludge */
/* the rest is opaque pointers to hidden innards */
char *re_guts; /* `char *' is more portable than `void *' */
char *re_fns;
} regex_t;
/* result reporting (may acquire more fields later) */
typedef struct
{
regoff_t rm_so; /* start of substring */
regoff_t rm_eo; /* end of substring */
} regmatch_t;
/* supplementary control and reporting */
typedef struct
{
regmatch_t rm_extend; /* see REG_EXPECT */
} rm_detail_t;
/*
* regex compilation flags
*/
#define REG_BASIC 000000 /* BREs (convenience) */
#define REG_EXTENDED 000001 /* EREs */
#define REG_ADVF 000002 /* advanced features in EREs */
#define REG_ADVANCED 000003 /* AREs (which are also EREs) */
#define REG_QUOTE 000004 /* no special characters, none */
#define REG_NOSPEC REG_QUOTE /* historical synonym */
#define REG_ICASE 000010 /* ignore case */
#define REG_NOSUB 000020 /* don't care about subexpressions */
#define REG_EXPANDED 000040 /* expanded format, white space & comments */
#define REG_NLSTOP 000100 /* \n doesn't match . or [^ ] */
#define REG_NLANCH 000200 /* ^ matches after \n, $ before */
#define REG_NEWLINE 000300 /* newlines are line terminators */
#define REG_PEND 000400 /* ugh -- backward-compatibility hack */
#define REG_EXPECT 001000 /* report details on partial/limited
* matches */
#define REG_BOSONLY 002000 /* temporary kludge for BOS-only matches */
#define REG_DUMP 004000 /* none of your business :-) */
#define REG_FAKE 010000 /* none of your business :-) */
#define REG_PROGRESS 020000 /* none of your business :-) */
/*
* regex execution flags
*/
#define REG_NOTBOL 0001 /* BOS is not BOL */
#define REG_NOTEOL 0002 /* EOS is not EOL */
#define REG_STARTEND 0004 /* backward compatibility kludge */
#define REG_FTRACE 0010 /* none of your business */
#define REG_MTRACE 0020 /* none of your business */
#define REG_SMALL 0040 /* none of your business */
/*
* error reporting
* Be careful if modifying the list of error codes -- the table used by
* regerror() is generated automatically from this file!
*/
#define REG_OKAY 0 /* no errors detected */
#define REG_NOMATCH 1 /* failed to match */
#define REG_BADPAT 2 /* invalid regexp */
#define REG_ECOLLATE 3 /* invalid collating element */
#define REG_ECTYPE 4 /* invalid character class */
#define REG_EESCAPE 5 /* invalid escape \ sequence */
#define REG_ESUBREG 6 /* invalid backreference number */
#define REG_EBRACK 7 /* brackets [] not balanced */
#define REG_EPAREN 8 /* parentheses () not balanced */
#define REG_EBRACE 9 /* braces {} not balanced */
#define REG_BADBR 10 /* invalid repetition count(s) */
#define REG_ERANGE 11 /* invalid character range */
#define REG_ESPACE 12 /* out of memory */
#define REG_BADRPT 13 /* quantifier operand invalid */
#define REG_ASSERT 15 /* "can't happen" -- you found a bug */
#define REG_INVARG 16 /* invalid argument to regex function */
#define REG_MIXED 17 /* character widths of regex and string
* differ */
#define REG_BADOPT 18 /* invalid embedded option */
/* two specials for debugging and testing */
#define REG_ATOI 101 /* convert error-code name to number */
#define REG_ITOA 102 /* convert error-code number to name */
/*
* the prototypes for exported functions
*/
extern int wx_regcomp(regex_t *, const wx_wchar *, size_t, int);
extern int regcomp(regex_t *, const wx_wchar *, int);
extern int wx_regexec(regex_t *, const wx_wchar *, size_t, rm_detail_t *, size_t, regmatch_t[], int);
extern int regexec(regex_t *, const wx_wchar *, size_t, regmatch_t[], int);
extern void regfree(regex_t *);
extern size_t regerror(int, const regex_t *, char *, size_t);
extern void wx_regfree(regex_t *);
extern size_t wx_regerror(int, const regex_t *, char *, size_t);
#ifdef __cplusplus
}
#endif
#endif /* _REGEX_H_ */

File diff suppressed because it is too large Load Diff

View File

@@ -1,53 +0,0 @@
/*
* regfree - free an RE
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
*
* You might think that this could be incorporated into regcomp.c, and
* that would be a reasonable idea... except that this is a generic
* function (with a generic name), applicable to all compiled REs
* regardless of the size of their characters, whereas the stuff in
* regcomp.c gets compiled once per character size.
*/
#include "regguts.h"
/*
- regfree - free an RE (generic function, punts to RE-specific function)
*
* Ignoring invocation with NULL is a convenience.
*/
VOID
regfree(re)
regex_t *re;
{
if (re == NULL)
return;
(*((struct fns *)re->re_fns)->free)(re);
}

View File

@@ -1,83 +0,0 @@
/*
* regcomp and regexec - front ends to re_ routines
*
* Mostly for implementation of backward-compatibility kludges. Note
* that these routines exist ONLY in char versions.
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "regguts.h"
/*
- regcomp - compile regular expression
*/
int
regcomp(re, str, flags)
regex_t *re;
CONST char *str;
int flags;
{
size_t len;
int f = flags;
if (f&REG_PEND) {
len = re->re_endp - str;
f &= ~REG_PEND;
} else
len = strlen(str);
return re_comp(re, str, len, f);
}
/*
- regexec - execute regular expression
*/
int
regexec(re, str, nmatch, pmatch, flags)
regex_t *re;
CONST char *str;
size_t nmatch;
regmatch_t pmatch[];
int flags;
{
CONST char *start;
size_t len;
int f = flags;
if (f&REG_STARTEND) {
start = str + pmatch[0].rm_so;
len = pmatch[0].rm_eo - pmatch[0].rm_so;
f &= ~REG_STARTEND;
} else {
start = str;
len = strlen(str);
}
return re_exec(re, start, len, nmatch, pmatch, f);
}

View File

@@ -1,417 +0,0 @@
/*
* Internal interface definitions, etc., for the reg package
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
/*
* Environmental customization. It should not (I hope) be necessary to
* alter the file you are now reading -- regcustom.h should handle it all,
* given care here and elsewhere.
*/
#include "regcustom.h"
/*
* Things that regcustom.h might override.
*/
/* assertions */
#ifndef assert
#ifndef REG_DEBUG
# ifndef NDEBUG
# define NDEBUG /* no assertions */
# endif
#endif
#include <assert.h>
#endif
/* voids */
#ifndef DISCARD
#define DISCARD void /* for throwing values away */
#endif
#ifndef VS
#define VS(x) ((void *)(x)) /* cast something to generic ptr */
#endif
/* function-pointer declarator */
#ifndef FUNCPTR
#define FUNCPTR(name, args) (*name) args
#endif
/* memory allocation */
#ifndef MALLOC
#define MALLOC(n) malloc(n)
#endif
#ifndef REALLOC
#define REALLOC(p, n) realloc(VS(p), n)
#endif
#ifndef FREE
#define FREE(p) free(VS(p))
#endif
/* want size of a char in bits, and max value in bounded quantifiers */
#ifndef CHAR_BIT
#include <limits.h>
#endif
#ifndef _POSIX2_RE_DUP_MAX
#define _POSIX2_RE_DUP_MAX 255 /* normally from <limits.h> */
#endif
/*
* misc
*/
#define NOTREACHED 0
#define xxx 1
#define DUPMAX _POSIX2_RE_DUP_MAX
#define INFINITY (DUPMAX+1)
#define REMAGIC 0xfed7 /* magic number for main struct */
/*
* debugging facilities
*/
#ifdef REG_DEBUG
/* FDEBUG does finite-state tracing */
#define FDEBUG(arglist) { if (v->eflags&REG_FTRACE) printf arglist; }
/* MDEBUG does higher-level tracing */
#define MDEBUG(arglist) { if (v->eflags&REG_MTRACE) printf arglist; }
#else
#define FDEBUG(arglist) {}
#define MDEBUG(arglist) {}
#endif
/*
* bitmap manipulation
*/
#define UBITS (CHAR_BIT * sizeof(unsigned))
#define BSET(uv, sn) ((uv)[(sn)/UBITS] |= (unsigned)1 << ((sn)%UBITS))
#define ISBSET(uv, sn) ((uv)[(sn)/UBITS] & ((unsigned)1 << ((sn)%UBITS)))
/*
* We dissect a chr into byts for colormap table indexing. Here we define
* a byt, which will be the same as a byte on most machines... The exact
* size of a byt is not critical, but about 8 bits is good, and extraction
* of 8-bit chunks is sometimes especially fast.
*/
#ifndef BYTBITS
#define BYTBITS 8 /* bits in a byt */
#endif
#define BYTTAB (1<<BYTBITS) /* size of table with one entry per byt
* value */
#define BYTMASK (BYTTAB-1) /* bit mask for byt */
#define NBYTS ((CHRBITS+BYTBITS-1)/BYTBITS)
/* the definition of GETCOLOR(), below, assumes NBYTS <= 4 */
/*
* As soon as possible, we map chrs into equivalence classes -- "colors" --
* which are of much more manageable number.
*/
typedef short color; /* colors of characters */
typedef int pcolor; /* what color promotes to */
#define COLORLESS (-1) /* impossible color */
#define WHITE 0 /* default color, parent of all others */
/*
* A colormap is a tree -- more precisely, a DAG -- indexed at each level
* by a byt of the chr, to map the chr to a color efficiently. Because
* lower sections of the tree can be shared, it can exploit the usual
* sparseness of such a mapping table. The tree is always NBYTS levels
* deep (in the past it was shallower during construction but was "filled"
* to full depth at the end of that); areas that are unaltered as yet point
* to "fill blocks" which are entirely WHITE in color.
*/
/* the tree itself */
struct colors
{
color ccolor[BYTTAB];
};
struct ptrs
{
union tree *pptr[BYTTAB];
};
union tree
{
struct colors colors;
struct ptrs ptrs;
};
#define tcolor colors.ccolor
#define tptr ptrs.pptr
/* internal per-color structure for the color machinery */
struct colordesc
{
uchr nchrs; /* number of chars of this color */
color sub; /* open subcolor (if any); free chain ptr */
#define NOSUB COLORLESS
struct arc *arcs; /* color chain */
int flags;
#define FREECOL 01 /* currently free */
#define PSEUDO 02 /* pseudocolor, no real chars */
#define UNUSEDCOLOR(cd) ((cd)->flags&FREECOL)
union tree *block; /* block of solid color, if any */
};
/* the color map itself */
struct colormap
{
int magic;
#define CMMAGIC 0x876
struct vars *v; /* for compile error reporting */
size_t ncds; /* number of colordescs */
size_t max; /* highest in use */
color free; /* beginning of free chain (if non-0) */
struct colordesc *cd;
#define CDEND(cm) (&(cm)->cd[(cm)->max + 1])
#define NINLINECDS ((size_t)10)
struct colordesc cdspace[NINLINECDS];
union tree tree[NBYTS]; /* tree top, plus fill blocks */
};
/* optimization magic to do fast chr->color mapping */
#define B0(c) ((c) & BYTMASK)
#define B1(c) (((c)>>BYTBITS) & BYTMASK)
#define B2(c) (((c)>>(2*BYTBITS)) & BYTMASK)
#define B3(c) (((c)>>(3*BYTBITS)) & BYTMASK)
#if NBYTS == 1
#define GETCOLOR(cm, c) ((cm)->tree->tcolor[B0(c)])
#endif
/* beware, for NBYTS>1, GETCOLOR() is unsafe -- 2nd arg used repeatedly */
#if NBYTS == 2
#define GETCOLOR(cm, c) ((cm)->tree->tptr[B1(c)]->tcolor[B0(c)])
#endif
#if NBYTS == 4
#define GETCOLOR(cm, c) ((cm)->tree->tptr[B3(c)]->tptr[B2(c)]->tptr[B1(c)]->tcolor[B0(c)])
#endif
/*
* Interface definitions for locale-interface functions in locale.c.
* Multi-character collating elements (MCCEs) cause most of the trouble.
*/
struct cvec
{
int nchrs; /* number of chrs */
int chrspace; /* number of chrs possible */
chr *chrs; /* pointer to vector of chrs */
int nranges; /* number of ranges (chr pairs) */
int rangespace; /* number of chrs possible */
chr *ranges; /* pointer to vector of chr pairs */
int nmcces; /* number of MCCEs */
int mccespace; /* number of MCCEs possible */
int nmccechrs; /* number of chrs used for MCCEs */
chr *mcces[1]; /* pointers to 0-terminated MCCEs */
/* and both batches of chrs are on the end */
};
/* caution: this value cannot be changed easily */
#define MAXMCCE 2 /* length of longest MCCE */
/*
* definitions for NFA internal representation
*
* Having a "from" pointer within each arc may seem redundant, but it
* saves a lot of hassle.
*/
struct state;
struct arc
{
int type;
#define ARCFREE '\0'
color co;
struct state *from; /* where it's from (and contained within) */
struct state *to; /* where it's to */
struct arc *outchain; /* *from's outs chain or free chain */
#define freechain outchain
struct arc *inchain; /* *to's ins chain */
struct arc *colorchain; /* color's arc chain */
};
struct arcbatch
{ /* for bulk allocation of arcs */
struct arcbatch *next;
#define ABSIZE 10
struct arc a[ABSIZE];
};
struct state
{
int no;
#define FREESTATE (-1)
char flag; /* marks special states */
int nins; /* number of inarcs */
struct arc *ins; /* chain of inarcs */
int nouts; /* number of outarcs */
struct arc *outs; /* chain of outarcs */
struct arc *free; /* chain of free arcs */
struct state *tmp; /* temporary for traversal algorithms */
struct state *next; /* chain for traversing all */
struct state *prev; /* back chain */
struct arcbatch oas; /* first arcbatch, avoid malloc in easy
* case */
int noas; /* number of arcs used in first arcbatch */
};
struct nfa
{
struct state *pre; /* pre-initial state */
struct state *init; /* initial state */
struct state *final; /* final state */
struct state *post; /* post-final state */
int nstates; /* for numbering states */
struct state *states; /* state-chain header */
struct state *slast; /* tail of the chain */
struct state *free; /* free list */
struct colormap *cm; /* the color map */
color bos[2]; /* colors, if any, assigned to BOS and BOL */
color eos[2]; /* colors, if any, assigned to EOS and EOL */
struct vars *v; /* simplifies compile error reporting */
struct nfa *parent; /* parent NFA, if any */
};
/*
* definitions for compacted NFA
*/
struct carc
{
color co; /* COLORLESS is list terminator */
int to; /* state number */
};
struct cnfa
{
int nstates; /* number of states */
int ncolors; /* number of colors */
int flags;
#define HASLACONS 01 /* uses lookahead constraints */
int pre; /* setup state number */
int post; /* teardown state number */
color bos[2]; /* colors, if any, assigned to BOS and BOL */
color eos[2]; /* colors, if any, assigned to EOS and EOL */
struct carc **states; /* vector of pointers to outarc lists */
struct carc *arcs; /* the area for the lists */
};
#define ZAPCNFA(cnfa) ((cnfa).nstates = 0)
#define NULLCNFA(cnfa) ((cnfa).nstates == 0)
/*
* subexpression tree
*/
struct subre
{
char op; /* '|', '.' (concat), 'b' (backref), '(',
* '=' */
char flags;
#define LONGER 01 /* prefers longer match */
#define SHORTER 02 /* prefers shorter match */
#define MIXED 04 /* mixed preference below */
#define CAP 010 /* capturing parens below */
#define BACKR 020 /* back reference below */
#define INUSE 0100 /* in use in final tree */
#define LOCAL 03 /* bits which may not propagate up */
#define LMIX(f) ((f)<<2) /* LONGER -> MIXED */
#define SMIX(f) ((f)<<1) /* SHORTER -> MIXED */
#define UP(f) (((f)&~LOCAL) | (LMIX(f) & SMIX(f) & MIXED))
#define MESSY(f) ((f)&(MIXED|CAP|BACKR))
#define PREF(f) ((f)&LOCAL)
#define PREF2(f1, f2) ((PREF(f1) != 0) ? PREF(f1) : PREF(f2))
#define COMBINE(f1, f2) (UP((f1)|(f2)) | PREF2(f1, f2))
short retry; /* index into retry memory */
int subno; /* subexpression number (for 'b' and '(') */
short min; /* min repetitions, for backref only */
short max; /* max repetitions, for backref only */
struct subre *left; /* left child, if any (also freelist
* chain) */
struct subre *right; /* right child, if any */
struct state *begin; /* outarcs from here... */
struct state *end; /* ...ending in inarcs here */
struct cnfa cnfa; /* compacted NFA, if any */
struct subre *chain; /* for bookkeeping and error cleanup */
};
/*
* table of function pointers for generic manipulation functions
* A regex_t's re_fns points to one of these.
*/
struct fns
{
void FUNCPTR(free, (regex_t *));
};
/*
* the insides of a regex_t, hidden behind a void *
*/
struct guts
{
int magic;
#define GUTSMAGIC 0xfed9
int cflags; /* copy of compile flags */
long info; /* copy of re_info */
size_t nsub; /* copy of re_nsub */
struct subre *tree;
struct cnfa search; /* for fast preliminary search */
int ntree;
struct colormap cmap;
int FUNCPTR(compare, (const chr *, const chr *, size_t));
struct subre *lacons; /* lookahead-constraint vector */
int nlacons; /* size of lacons */
};

View File

@@ -1,904 +0,0 @@
/*
* tclUniData.c --
*
* Declarations of Unicode character information tables. This file is
* automatically generated by the tools/uniParse.tcl script. Do not
* modify this file by hand.
*
* Copyright (c) 1998 by Scriptics Corporation.
* All rights reserved.
*
* RCS: @(#) $Id$
*/
/*
* A 16-bit Unicode character is split into two parts in order to index
* into the following tables. The lower OFFSET_BITS comprise an offset
* into a page of characters. The upper bits comprise the page number.
*/
#define OFFSET_BITS 5
/*
* The pageMap is indexed by page number and returns an alternate page number
* that identifies a unique page of characters. Many Unicode characters map
* to the same alternate page number.
*/
static unsigned char pageMap[] = {
0, 1, 2, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 7, 15, 16, 17,
18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 7, 32,
7, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 47,
48, 49, 50, 51, 52, 35, 47, 53, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
58, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 80, 81,
84, 85, 80, 86, 87, 88, 89, 90, 91, 92, 35, 93, 94, 95, 35, 96, 97,
98, 99, 100, 101, 102, 35, 47, 103, 104, 35, 35, 105, 106, 107, 47,
47, 108, 47, 47, 109, 47, 110, 111, 47, 112, 47, 113, 114, 115, 116,
114, 47, 117, 118, 35, 47, 47, 119, 90, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 120, 121, 47, 47, 122,
35, 35, 35, 35, 47, 123, 124, 125, 126, 47, 127, 128, 47, 129, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 7, 7, 7, 7, 130, 7, 7, 131, 132, 133, 134,
135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 156, 156, 156, 156, 156, 156,
157, 158, 159, 160, 161, 162, 35, 35, 35, 160, 163, 164, 165, 166,
167, 168, 169, 160, 160, 160, 160, 170, 171, 172, 173, 174, 160, 160,
175, 35, 35, 35, 35, 176, 177, 178, 179, 180, 181, 35, 35, 160, 160,
160, 160, 160, 160, 160, 160, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
182, 160, 160, 155, 160, 160, 160, 160, 160, 160, 170, 183, 184, 185,
90, 47, 186, 90, 47, 187, 188, 189, 47, 47, 190, 128, 35, 35, 191,
192, 193, 194, 192, 195, 196, 197, 160, 160, 160, 198, 160, 160, 199,
197, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 200, 35, 35, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 201, 35, 35, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
202, 203, 204, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 205, 35, 35, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206,
206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 206, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 47, 47, 47, 47, 47, 47, 47, 47, 47, 208, 35, 35, 35, 35,
35, 35, 209, 210, 211, 47, 47, 212, 213, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 214, 215, 47, 216, 47, 217, 218, 35, 219, 220, 221, 47,
47, 47, 222, 223, 2, 224, 225, 226, 227, 228, 229, 230, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 231, 35, 232, 233,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47,
47, 208, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 47, 234, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 235, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207,
207, 207, 207, 236, 207, 207, 207, 207, 207, 207, 207, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35,
35, 35, 35, 35, 35
};
/*
* The groupMap is indexed by combining the alternate page number with
* the page offset and returns a group number that identifies a unique
* set of character attributes.
*/
static unsigned char groupMap[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 3, 3, 3, 5, 6, 3, 7, 3, 8,
3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 7, 7, 7, 3, 3, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 5, 3, 6, 11, 12, 11, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 5, 7, 6, 7, 1, 2, 3, 4, 4, 4, 4, 14, 14, 11, 14, 15, 16,
7, 8, 14, 11, 14, 7, 17, 17, 11, 18, 14, 3, 11, 17, 15, 19, 17, 17,
17, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 7, 10, 10, 10, 10, 10, 10, 10, 15,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 7, 13, 13, 13, 13, 13, 13, 13, 20, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21,
22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 23, 24, 21, 22, 21,
22, 21, 22, 15, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21,
22, 21, 22, 15, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21,
22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 25,
21, 22, 21, 22, 21, 22, 26, 15, 27, 21, 22, 21, 22, 28, 21, 22, 29,
29, 21, 22, 15, 30, 31, 32, 21, 22, 29, 33, 34, 35, 36, 21, 22, 15,
15, 35, 37, 15, 38, 21, 22, 21, 22, 21, 22, 39, 21, 22, 39, 15, 15,
21, 22, 39, 21, 22, 40, 40, 21, 22, 21, 22, 41, 21, 22, 15, 42, 21,
22, 15, 43, 42, 42, 42, 42, 44, 45, 46, 44, 45, 46, 44, 45, 46, 21,
22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 47, 21,
22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22,
15, 44, 45, 46, 21, 22, 48, 49, 21, 22, 21, 22, 21, 22, 21, 22, 0,
0, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22,
21, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 50, 51, 15, 52, 52, 15, 53, 15,
54, 15, 15, 15, 15, 52, 15, 15, 55, 15, 15, 15, 15, 56, 57, 15, 15,
15, 15, 15, 57, 15, 15, 58, 15, 15, 59, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 60, 15, 15, 60, 15, 15, 15, 15, 60, 15, 61, 61, 15, 15,
15, 15, 15, 15, 62, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 63,
63, 63, 63, 63, 63, 63, 63, 63, 11, 11, 63, 63, 63, 63, 63, 63, 63,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 63, 63, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 63, 63, 63, 63,
63, 11, 11, 11, 11, 11, 11, 11, 11, 11, 63, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 65, 64, 64, 64, 64, 64, 64,
64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64,
64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11,
0, 0, 0, 0, 63, 0, 0, 0, 3, 0, 0, 0, 0, 0, 11, 11, 66, 3, 67, 67, 67,
0, 68, 0, 69, 69, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10, 70, 71,
71, 71, 15, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 72, 13, 13, 13, 13, 13, 13, 13, 13, 13, 73, 74, 74, 0,
75, 76, 77, 77, 77, 78, 79, 15, 0, 0, 21, 22, 21, 22, 21, 22, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 80, 81, 47,
15, 82, 83, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84, 84, 84, 84, 84, 84, 84,
84, 84, 84, 84, 84, 84, 84, 84, 84, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81,
81, 81, 81, 81, 21, 22, 14, 64, 64, 64, 64, 0, 85, 85, 0, 0, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21,
22, 77, 21, 22, 21, 22, 0, 0, 21, 22, 0, 0, 21, 22, 0, 0, 0, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21,
22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22,
21, 22, 0, 0, 21, 22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 86, 86, 86, 86,
86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86,
86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86,
0, 0, 63, 3, 3, 3, 3, 3, 3, 0, 87, 87, 87, 87, 87, 87, 87, 87, 87,
87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87,
87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87, 15, 0, 3, 8, 0, 0,
0, 0, 0, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 64, 64, 64, 3, 64, 3, 64,
64, 3, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 0, 0, 0, 0, 0, 42, 42, 42, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 0, 0, 0, 0, 0, 63, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 0, 0, 64, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 3, 42, 64,
64, 64, 64, 64, 64, 64, 85, 85, 64, 64, 64, 64, 64, 64, 63, 63, 64,
64, 14, 64, 64, 64, 64, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 42, 42,
42, 14, 14, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 88, 42,
64, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64,
64, 89, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 0, 0, 64, 42, 89, 89, 89, 64, 64, 64, 64, 64, 64,
64, 64, 89, 89, 89, 89, 64, 0, 0, 42, 64, 64, 64, 64, 0, 0, 0, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 64, 64, 3, 3, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64,
89, 89, 0, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 42, 42, 0, 0, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 0, 42, 0, 0, 0, 42,
42, 42, 42, 0, 0, 64, 0, 89, 89, 89, 64, 64, 64, 64, 0, 0, 89, 89,
0, 0, 89, 89, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 42, 42,
0, 42, 42, 42, 64, 64, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 42, 42,
4, 4, 17, 17, 17, 17, 17, 17, 14, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 42,
42, 42, 42, 42, 42, 0, 0, 0, 0, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0,
42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 0, 42, 42, 0, 42, 42, 0, 0,
64, 0, 89, 89, 89, 64, 64, 0, 0, 0, 0, 64, 64, 0, 0, 64, 64, 64, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 0, 42, 0, 0, 0, 0, 0,
0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 64, 64, 42, 42, 42, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 64, 64, 89, 0, 42, 42, 42, 42, 42, 42, 42,
0, 42, 0, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 42, 42,
42, 42, 0, 42, 42, 0, 42, 42, 42, 42, 42, 0, 0, 64, 42, 89, 89, 89,
64, 64, 64, 64, 64, 0, 64, 64, 89, 0, 89, 89, 64, 0, 0, 42, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 0, 0, 0, 0, 0, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42,
42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 0, 42,
42, 0, 0, 42, 42, 42, 42, 0, 0, 64, 42, 89, 64, 89, 64, 64, 64, 0,
0, 0, 89, 89, 0, 0, 89, 89, 64, 0, 0, 0, 0, 0, 0, 0, 0, 64, 89, 0,
0, 0, 0, 42, 42, 0, 42, 42, 42, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 89,
0, 42, 42, 42, 42, 42, 42, 0, 0, 0, 42, 42, 42, 0, 42, 42, 42, 42,
0, 0, 0, 42, 42, 0, 42, 0, 42, 42, 0, 0, 0, 42, 42, 0, 0, 0, 42, 42,
42, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 0, 0, 0,
0, 89, 89, 64, 89, 89, 0, 0, 0, 89, 89, 89, 0, 89, 89, 89, 64, 0, 0,
0, 0, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 17, 17, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 89, 89, 89, 0, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42,
42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 0, 42, 42, 42, 42, 42, 0, 0, 0, 0, 64, 64, 64, 89, 89,
89, 89, 0, 64, 64, 64, 0, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 64,
64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89,
89, 0, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 0, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42,
42, 42, 0, 0, 0, 0, 89, 64, 89, 89, 89, 89, 89, 0, 64, 89, 89, 0, 89,
89, 64, 64, 0, 0, 0, 0, 0, 0, 0, 89, 89, 0, 0, 0, 0, 0, 0, 0, 42, 0,
42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 89, 89, 89, 64, 64,
64, 0, 0, 89, 89, 89, 0, 89, 89, 89, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0,
89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 89, 0, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 0, 0,
42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 64, 0, 0, 0, 0, 89, 89, 89, 64,
64, 64, 0, 64, 0, 89, 89, 89, 89, 89, 89, 89, 89, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 89, 89, 3, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 64, 42, 42, 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 4, 42, 42,
42, 42, 42, 42, 63, 64, 64, 64, 64, 64, 64, 64, 64, 3, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 3, 3, 0, 0, 0, 0, 0, 42, 42, 0, 42, 0, 0, 42, 42,
0, 42, 0, 0, 42, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 0, 42, 42, 42, 42,
42, 42, 42, 0, 42, 42, 42, 0, 42, 0, 42, 0, 0, 42, 42, 0, 42, 42, 42,
42, 64, 42, 42, 64, 64, 64, 64, 64, 64, 0, 64, 64, 42, 0, 0, 42, 42,
42, 42, 42, 0, 63, 0, 64, 64, 64, 64, 64, 64, 0, 0, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 0, 0, 42, 42, 0, 0, 42, 14, 14, 14, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 14, 14, 14, 14, 14, 64, 64, 14, 14, 14,
14, 14, 14, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 14, 64, 14, 64, 14, 64, 5, 6, 5, 6, 89, 89, 42, 42, 42,
42, 42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 0, 0, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 89, 64, 64, 64, 64, 64, 3, 64, 64, 42,
42, 42, 42, 0, 0, 0, 0, 64, 64, 64, 64, 64, 64, 64, 64, 0, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
0, 14, 14, 14, 14, 14, 14, 14, 14, 64, 14, 14, 14, 14, 14, 14, 0, 0,
14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 0, 42,
42, 42, 42, 42, 0, 42, 42, 0, 89, 64, 64, 64, 64, 89, 64, 0, 0, 0,
64, 64, 89, 64, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3,
3, 3, 3, 3, 3, 42, 42, 42, 42, 42, 42, 89, 89, 64, 64, 0, 0, 0, 0,
0, 0, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77,
77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77, 77,
77, 77, 77, 77, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
0, 0, 0, 0, 3, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0,
0, 0, 0, 0, 42, 42, 42, 42, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 0, 0, 42, 42, 42,
42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 0, 42, 0, 42, 42, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42, 42,
0, 42, 0, 42, 42, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42, 42, 0, 42,
0, 42, 42, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 0, 42, 0, 42, 42, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42,
42, 0, 42, 0, 42, 42, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42, 42, 0,
42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3,
3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 3, 3, 42, 42, 42, 42, 42,
42, 42, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 5, 6, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
3, 3, 3, 90, 90, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 89, 89, 89, 64, 64, 64, 64, 64, 64, 64, 89, 89, 89, 89, 89,
89, 89, 89, 64, 89, 89, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
3, 3, 3, 3, 3, 3, 3, 4, 3, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3,
3, 3, 3, 3, 8, 3, 3, 3, 3, 88, 88, 88, 88, 0, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 0, 0, 0, 0, 0, 0, 42, 42, 42, 63, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 0, 0, 0,
0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 64, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 22, 21, 22, 21, 22, 21,
22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 15, 15,
15, 15, 15, 91, 0, 0, 0, 0, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22,
21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 21, 22, 0,
0, 0, 0, 0, 0, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93,
93, 93, 93, 92, 92, 92, 92, 92, 92, 0, 0, 93, 93, 93, 93, 93, 93, 0,
0, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93,
92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 92,
92, 92, 92, 92, 92, 0, 0, 93, 93, 93, 93, 93, 93, 0, 0, 15, 92, 15,
92, 15, 92, 15, 92, 0, 93, 0, 93, 0, 93, 0, 93, 92, 92, 92, 92, 92,
92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 95, 95, 95, 95,
96, 96, 97, 97, 98, 98, 99, 99, 0, 0, 92, 92, 92, 92, 92, 92, 92, 92,
100, 100, 100, 100, 100, 100, 100, 100, 92, 92, 92, 92, 92, 92, 92,
92, 100, 100, 100, 100, 100, 100, 100, 100, 92, 92, 92, 92, 92, 92,
92, 92, 100, 100, 100, 100, 100, 100, 100, 100, 92, 92, 15, 101, 15,
0, 15, 15, 93, 93, 102, 102, 103, 11, 104, 11, 11, 11, 15, 101, 15,
0, 15, 15, 105, 105, 105, 105, 103, 11, 11, 11, 92, 92, 15, 15, 0,
0, 15, 15, 93, 93, 106, 106, 0, 11, 11, 11, 92, 92, 15, 15, 15, 107,
15, 15, 93, 93, 108, 108, 109, 11, 11, 11, 0, 0, 15, 101, 15, 0, 15,
15, 110, 110, 111, 111, 103, 11, 11, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 88, 88, 88, 88, 8, 8, 8, 8, 8, 8, 3, 3, 16, 19, 5, 16, 16,
19, 5, 16, 3, 3, 3, 3, 3, 3, 3, 3, 112, 113, 88, 88, 88, 88, 88, 2,
3, 3, 3, 3, 3, 3, 3, 3, 3, 16, 19, 3, 3, 3, 3, 12, 12, 3, 3, 3, 7,
5, 6, 0, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88, 88, 88, 88, 88, 88, 17,
0, 0, 0, 17, 17, 17, 17, 17, 17, 7, 7, 7, 5, 6, 15, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 7, 7, 7, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 85, 85, 85, 85, 64, 85, 85, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 77,
14, 14, 14, 14, 77, 14, 14, 15, 77, 77, 77, 15, 15, 77, 77, 77, 15,
14, 77, 14, 14, 14, 77, 77, 77, 77, 77, 14, 14, 14, 14, 14, 14, 77,
14, 114, 14, 77, 14, 115, 116, 77, 77, 14, 15, 77, 77, 14, 77, 15,
42, 42, 42, 42, 15, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117,
117, 117, 117, 117, 117, 118, 118, 118, 118, 118, 118, 118, 118, 118,
118, 118, 118, 118, 118, 118, 118, 90, 90, 90, 90, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14, 7, 7, 14, 14,
14, 14, 7, 14, 14, 7, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 7, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 14, 14, 7,
14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 7, 7, 7, 7, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 7, 7, 14, 14, 14, 14, 14, 14, 14, 5, 6, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 119, 119, 119, 119, 119, 119,
119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119, 119,
119, 119, 119, 119, 119, 119, 120, 120, 120, 120, 120, 120, 120, 120,
120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120,
120, 120, 120, 120, 17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 7, 14, 14, 14, 14, 14, 14, 14, 14, 14, 7, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 7, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14,
14, 14, 14, 0, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 0, 14, 0, 14, 14, 14, 14, 0, 0, 0, 14, 0, 14, 14,
14, 14, 14, 14, 14, 0, 0, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 0, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0,
0, 0, 0, 2, 3, 3, 3, 14, 63, 42, 90, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6,
14, 14, 5, 6, 5, 6, 5, 6, 5, 6, 8, 5, 6, 6, 14, 90, 90, 90, 90, 90,
90, 90, 90, 90, 64, 64, 64, 64, 64, 64, 8, 63, 63, 63, 63, 63, 14,
14, 90, 90, 90, 0, 0, 0, 14, 14, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 64, 64,
11, 11, 63, 63, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 12, 63,
63, 63, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 14, 14, 17, 17, 17,
17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 0, 0, 0, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 0, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 0, 14, 14, 14, 0, 14, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
42, 42, 42, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 121, 121, 121, 121, 121, 121,
121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121,
121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 122, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15,
15, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 15, 15, 15, 15, 0,
0, 0, 0, 0, 42, 64, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 7, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 42, 42, 42, 42,
42, 0, 42, 0, 42, 42, 0, 42, 42, 0, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0, 0, 64, 64, 64, 64,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 8, 8, 12, 12, 5, 6, 5, 6, 5,
6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 0, 0, 0, 0, 3, 3, 3, 3, 12, 12, 12,
3, 3, 3, 0, 3, 3, 3, 3, 8, 5, 6, 5, 6, 5, 6, 3, 3, 3, 7, 8, 7, 7, 7,
0, 3, 4, 3, 3, 0, 0, 0, 0, 42, 42, 42, 0, 42, 0, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
0, 0, 88, 0, 3, 3, 3, 4, 3, 3, 3, 5, 6, 3, 7, 3, 8, 3, 3, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 3, 3, 7, 7, 7, 3, 11, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 5, 7, 6, 7, 0, 0, 3, 5, 6, 3, 12, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 63, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 63,
63, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 0, 0, 0,
42, 42, 42, 42, 42, 42, 0, 0, 42, 42, 42, 42, 42, 42, 0, 0, 42, 42,
42, 42, 42, 42, 0, 0, 42, 42, 42, 0, 0, 0, 4, 4, 7, 11, 14, 4, 4, 0,
14, 7, 7, 7, 7, 14, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88, 88, 88, 14,
14, 42, 17, 42, 42, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 123, 123, 123,
126, 126, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 89, 64, 14, 14, 14,
14, 14, 0, 0, 77, 77, 15, 15, 77, 15, 15, 77, 77, 15, 77, 77, 15, 77,
77, 15, 15, 77, 15, 15, 77, 77, 15, 77, 77, 15, 77, 77, 15, 15, 77,
15, 15, 77, 77, 15, 77, 77, 15, 77, 77, 15, 15, 77, 77, 15, 15, 77,
15, 15, 77, 77, 15, 15, 77, 15, 15, 77, 77, 15, 15, 9, 9, 9, 42, 42,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 88, 0, 88, 88, 88, 88, 88, 88, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122, 122,
122
};
/*
* Each group represents a unique set of character attributes. The attributes
* are encoded into a 32-bit value as follows:
*
* Bits 0-4 Character category: see the constants listed below.
*
* Bits 5-7 Case delta type: 000 = identity
* 010 = add delta for lower
* 011 = add delta for lower, add 1 for title
* 100 = sutract delta for title/upper
* 101 = sub delta for upper, sub 1 for title
* 110 = sub delta for upper, add delta for lower
*
* Bits 8-21 Reserved for future use.
*
* Bits 22-31 Case delta: delta for case conversions. This should be the
* highest field so we can easily sign extend.
*/
static int groups[] = {
0, 15, 12, 25, 27, 21, 22, 26, 20, 9, 134217793, 28, 19, 134217858,
29, 2, 23, 11, 1178599554, 24, -507510654, 4194369, 4194434, -834666431,
973078658, -507510719, 1258291330, 880803905, 864026689, 859832385,
331350081, 847249473, 851443777, 868220993, -406847358, 884998209,
876609601, 893386817, 897581121, 914358337, 910164033, 918552641,
5, -234880894, 8388705, 4194499, 8388770, 331350146, -406847423,
-234880959, 880803970, 864026754, 859832450, 847249538, 851443842,
868221058, 876609666, 884998274, 893386882, 897581186, 914358402,
910164098, 918552706, 4, 6, -352321402, 159383617, 155189313,
268435521, 264241217, 159383682, 155189378, 130023554, 268435586,
264241282, 260046978, 239075458, 1, 197132418, 226492546, 360710274,
335544450, -251658175, 402653314, 335544385, 7, 201326657, 201326722,
16, 8, 10, 247464066, -33554302, -33554367, -310378366, -360710014,
-419430270, -536870782, -469761918, -528482174, -33554365, -37748606,
-310378431, -37748669, 155189378, -360710079, -419430335, -29359998,
-469761983, -29360063, -536870847, -528482239, 13, 14, -1463812031,
-801111999, -293601215, 67108938, 67109002, 109051997, 109052061,
18, 17, 8388673, 12582977, 8388738, 12583042
};
/*
* The following constants are used to determine the category of a
* Unicode character.
*/
#define UNICODE_CATEGORY_MASK 0X1F
enum {
UNASSIGNED,
UPPERCASE_LETTER,
LOWERCASE_LETTER,
TITLECASE_LETTER,
MODIFIER_LETTER,
OTHER_LETTER,
NON_SPACING_MARK,
ENCLOSING_MARK,
COMBINING_SPACING_MARK,
DECIMAL_DIGIT_NUMBER,
LETTER_NUMBER,
OTHER_NUMBER,
SPACE_SEPARATOR,
LINE_SEPARATOR,
PARAGRAPH_SEPARATOR,
CONTROL,
FORMAT,
PRIVATE_USE,
SURROGATE,
CONNECTOR_PUNCTUATION,
DASH_PUNCTUATION,
OPEN_PUNCTUATION,
CLOSE_PUNCTUATION,
INITIAL_QUOTE_PUNCTUATION,
FINAL_QUOTE_PUNCTUATION,
OTHER_PUNCTUATION,
MATH_SYMBOL,
CURRENCY_SYMBOL,
MODIFIER_SYMBOL,
OTHER_SYMBOL
};
/*
* The following macros extract the fields of the character info. The
* GetDelta() macro is complicated because we can't rely on the C compiler
* to do sign extension on right shifts.
*/
#define GetCaseType(info) (((info) & 0xE0) >> 5)
#define GetCategory(info) ((info) & 0x1F)
#define GetDelta(info) (((info) > 0) ? ((info) >> 22) : (~(~((info)) >> 22)))
/*
* This macro extracts the information about a character from the
* Unicode character tables.
*/
#define GetUniCharInfo(ch) (groups[groupMap[(pageMap[(((int)(ch)) & 0xffff) >> OFFSET_BITS] << OFFSET_BITS) | ((ch) & ((1 << OFFSET_BITS)-1))]])

View File

@@ -1,477 +0,0 @@
# regular expression test set
# Lines are at least three fields, separated by one or more tabs. "" stands
# for an empty field. First field is an RE. Second field is flags. If
# C flag given, regcomp() is expected to fail, and the third field is the
# error name (minus the leading REG_).
#
# Otherwise it is expected to succeed, and the third field is the string to
# try matching it against. If there is no fourth field, the match is
# expected to fail. If there is a fourth field, it is the substring that
# the RE is expected to match. If there is a fifth field, it is a comma-
# separated list of what the subexpressions should match, with - indicating
# no match for that one. In both the fourth and fifth fields, a (sub)field
# starting with @ indicates that the (sub)expression is expected to match
# a null string followed by the stuff after the @; this provides a way to
# test where null strings match. The character `N' in REs and strings
# is newline, `S' is space, `T' is tab, `Z' is NUL.
#
# The full list of flags:
# - placeholder, does nothing
# b RE is a BRE, not an ERE
# & try it as both an ERE and a BRE
# C regcomp() error expected, third field is error name
# i REG_ICASE
# m ("mundane") REG_NOSPEC
# s REG_NOSUB (not really testable)
# n REG_NEWLINE
# ^ REG_NOTBOL
# $ REG_NOTEOL
# # REG_STARTEND (see below)
# p REG_PEND
#
# For REG_STARTEND, the start/end offsets are those of the substring
# enclosed in ().
# basics
a & a a
abc & abc abc
abc|de - abc abc
a|b|c - abc a
# parentheses and perversions thereof
a(b)c - abc abc
a\(b\)c b abc abc
a( C EPAREN
a( b a( a(
a\( - a( a(
a\( bC EPAREN
a\(b bC EPAREN
a(b C EPAREN
a(b b a(b a(b
# gag me with a right parenthesis -- 1003.2 goofed here (my fault, partly)
a) - a) a)
) - ) )
# end gagging (in a just world, those *should* give EPAREN)
a) b a) a)
a\) bC EPAREN
\) bC EPAREN
a()b - ab ab
a\(\)b b ab ab
# anchoring and REG_NEWLINE
^abc$ & abc abc
a^b - a^b
a^b b a^b a^b
a$b - a$b
a$b b a$b a$b
^ & abc @abc
$ & abc @
^$ & "" @
$^ - "" @
\($\)\(^\) b "" @
# stop retching, those are legitimate (although disgusting)
^^ - "" @
$$ - "" @
b$ & abNc
b$ &n abNc b
^b$ & aNbNc
^b$ &n aNbNc b
^$ &n aNNb @Nb
^$ n abc
^$ n abcN @
$^ n aNNb @Nb
\($\)\(^\) bn aNNb @Nb
^^ n^ aNNb @Nb
$$ n aNNb @NN
^a ^ a
a$ $ a
^a ^n aNb
^b ^n aNb b
a$ $n bNa
b$ $n bNa b
a*(^b$)c* - b b
a*\(^b$\)c* b b b
# certain syntax errors and non-errors
| C EMPTY
| b | |
* C BADRPT
* b * *
+ C BADRPT
? C BADRPT
"" &C EMPTY
() - abc @abc
\(\) b abc @abc
a||b C EMPTY
|ab C EMPTY
ab| C EMPTY
(|a)b C EMPTY
(a|)b C EMPTY
(*a) C BADRPT
(+a) C BADRPT
(?a) C BADRPT
({1}a) C BADRPT
\(\{1\}a\) bC BADRPT
(a|*b) C BADRPT
(a|+b) C BADRPT
(a|?b) C BADRPT
(a|{1}b) C BADRPT
^* C BADRPT
^* b * *
^+ C BADRPT
^? C BADRPT
^{1} C BADRPT
^\{1\} bC BADRPT
# metacharacters, backslashes
a.c & abc abc
a[bc]d & abd abd
a\*c & a*c a*c
a\\b & a\b a\b
a\\\*b & a\*b a\*b
a\bc & abc abc
a\ &C EESCAPE
a\\bc & a\bc a\bc
\{ bC BADRPT
a\[b & a[b a[b
a[b &C EBRACK
# trailing $ is a peculiar special case for the BRE code
a$ & a a
a$ & a$
a\$ & a
a\$ & a$ a$
a\\$ & a
a\\$ & a$
a\\$ & a\$
a\\$ & a\ a\
# back references, ugh
a\(b\)\2c bC ESUBREG
a\(b\1\)c bC ESUBREG
a\(b*\)c\1d b abbcbbd abbcbbd bb
a\(b*\)c\1d b abbcbd
a\(b*\)c\1d b abbcbbbd
^\(.\)\1 b abc
a\([bc]\)\1d b abcdabbd abbd b
a\(\([bc]\)\2\)*d b abbccd abbccd
a\(\([bc]\)\2\)*d b abbcbd
# actually, this next one probably ought to fail, but the spec is unclear
a\(\(b\)*\2\)*d b abbbd abbbd
# here is a case that no NFA implementation does right
\(ab*\)[ab]*\1 b ababaaa ababaaa a
# check out normal matching in the presence of back refs
\(a\)\1bcd b aabcd aabcd
\(a\)\1bc*d b aabcd aabcd
\(a\)\1bc*d b aabd aabd
\(a\)\1bc*d b aabcccd aabcccd
\(a\)\1bc*[ce]d b aabcccd aabcccd
^\(a\)\1b\(c\)*cd$ b aabcccd aabcccd
# ordinary repetitions
ab*c & abc abc
ab+c - abc abc
ab?c - abc abc
a\(*\)b b a*b a*b
a\(**\)b b ab ab
a\(***\)b bC BADRPT
*a b *a *a
**a b a a
***a bC BADRPT
# the dreaded bounded repetitions
{ & { {
{abc & {abc {abc
{1 C BADRPT
{1} C BADRPT
a{b & a{b a{b
a{1}b - ab ab
a\{1\}b b ab ab
a{1,}b - ab ab
a\{1,\}b b ab ab
a{1,2}b - aab aab
a\{1,2\}b b aab aab
a{1 C EBRACE
a\{1 bC EBRACE
a{1a C EBRACE
a\{1a bC EBRACE
a{1a} C BADBR
a\{1a\} bC BADBR
a{,2} - a{,2} a{,2}
a\{,2\} bC BADBR
a{,} - a{,} a{,}
a\{,\} bC BADBR
a{1,x} C BADBR
a\{1,x\} bC BADBR
a{1,x C EBRACE
a\{1,x bC EBRACE
a{300} C BADBR
a\{300\} bC BADBR
a{1,0} C BADBR
a\{1,0\} bC BADBR
ab{0,0}c - abcac ac
ab\{0,0\}c b abcac ac
ab{0,1}c - abcac abc
ab\{0,1\}c b abcac abc
ab{0,3}c - abbcac abbc
ab\{0,3\}c b abbcac abbc
ab{1,1}c - acabc abc
ab\{1,1\}c b acabc abc
ab{1,3}c - acabc abc
ab\{1,3\}c b acabc abc
ab{2,2}c - abcabbc abbc
ab\{2,2\}c b abcabbc abbc
ab{2,4}c - abcabbc abbc
ab\{2,4\}c b abcabbc abbc
((a{1,10}){1,10}){1,10} - a a a,a
# multiple repetitions
a** &C BADRPT
a++ C BADRPT
a?? C BADRPT
a*+ C BADRPT
a*? C BADRPT
a+* C BADRPT
a+? C BADRPT
a?* C BADRPT
a?+ C BADRPT
a{1}{1} C BADRPT
a*{1} C BADRPT
a+{1} C BADRPT
a?{1} C BADRPT
a{1}* C BADRPT
a{1}+ C BADRPT
a{1}? C BADRPT
a*{b} - a{b} a{b}
a\{1\}\{1\} bC BADRPT
a*\{1\} bC BADRPT
a\{1\}* bC BADRPT
# brackets, and numerous perversions thereof
a[b]c & abc abc
a[ab]c & abc abc
a[^ab]c & adc adc
a[]b]c & a]c a]c
a[[b]c & a[c a[c
a[-b]c & a-c a-c
a[^]b]c & adc adc
a[^-b]c & adc adc
a[b-]c & a-c a-c
a[b &C EBRACK
a[] &C EBRACK
a[1-3]c & a2c a2c
a[3-1]c &C ERANGE
a[1-3-5]c &C ERANGE
a[[.-.]--]c & a-c a-c
a[1- &C ERANGE
a[[. &C EBRACK
a[[.x &C EBRACK
a[[.x. &C EBRACK
a[[.x.] &C EBRACK
a[[.x.]] & ax ax
a[[.x,.]] &C ECOLLATE
a[[.one.]]b & a1b a1b
a[[.notdef.]]b &C ECOLLATE
a[[.].]]b & a]b a]b
a[[:alpha:]]c & abc abc
a[[:notdef:]]c &C ECTYPE
a[[: &C EBRACK
a[[:alpha &C EBRACK
a[[:alpha:] &C EBRACK
a[[:alpha,:] &C ECTYPE
a[[:]:]]b &C ECTYPE
a[[:-:]]b &C ECTYPE
a[[:alph:]] &C ECTYPE
a[[:alphabet:]] &C ECTYPE
[[:alnum:]]+ - -%@a0X- a0X
[[:alpha:]]+ - -%@aX0- aX
[[:blank:]]+ - aSSTb SST
[[:cntrl:]]+ - aNTb NT
[[:digit:]]+ - a019b 019
[[:graph:]]+ - Sa%bS a%b
[[:lower:]]+ - AabC ab
[[:print:]]+ - NaSbN aSb
[[:punct:]]+ - S%-&T %-&
[[:space:]]+ - aSNTb SNT
[[:upper:]]+ - aBCd BC
[[:xdigit:]]+ - p0f3Cq 0f3C
a[[=b=]]c & abc abc
a[[= &C EBRACK
a[[=b &C EBRACK
a[[=b= &C EBRACK
a[[=b=] &C EBRACK
a[[=b,=]] &C ECOLLATE
a[[=one=]]b & a1b a1b
# complexities
a(((b)))c - abc abc
a(b|(c))d - abd abd
a(b*|c)d - abbd abbd
# just gotta have one DFA-buster, of course
a[ab]{20} - aaaaabaaaabaaaabaaaab aaaaabaaaabaaaabaaaab
# and an inline expansion in case somebody gets tricky
a[ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab] - aaaaabaaaabaaaabaaaab aaaaabaaaabaaaabaaaab
# and in case somebody just slips in an NFA...
a[ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab][ab](wee|week)(knights|night) - aaaaabaaaabaaaabaaaabweeknights aaaaabaaaabaaaabaaaabweeknights
# fish for anomalies as the number of states passes 32
12345678901234567890123456789 - a12345678901234567890123456789b 12345678901234567890123456789
123456789012345678901234567890 - a123456789012345678901234567890b 123456789012345678901234567890
1234567890123456789012345678901 - a1234567890123456789012345678901b 1234567890123456789012345678901
12345678901234567890123456789012 - a12345678901234567890123456789012b 12345678901234567890123456789012
123456789012345678901234567890123 - a123456789012345678901234567890123b 123456789012345678901234567890123
# and one really big one, beyond any plausible word width
1234567890123456789012345678901234567890123456789012345678901234567890 - a1234567890123456789012345678901234567890123456789012345678901234567890b 1234567890123456789012345678901234567890123456789012345678901234567890
# fish for problems as brackets go past 8
[ab][cd][ef][gh][ij][kl][mn] - xacegikmoq acegikm
[ab][cd][ef][gh][ij][kl][mn][op] - xacegikmoq acegikmo
[ab][cd][ef][gh][ij][kl][mn][op][qr] - xacegikmoqy acegikmoq
[ab][cd][ef][gh][ij][kl][mn][op][q] - xacegikmoqy acegikmoq
# subtleties of matching
abc & xabcy abc
a\(b\)?c\1d b acd
aBc i Abc Abc
a[Bc]*d i abBCcd abBCcd
0[[:upper:]]1 &i 0a1 0a1
0[[:lower:]]1 &i 0A1 0A1
a[^b]c &i abc
a[^b]c &i aBc
a[^b]c &i adc adc
[a]b[c] - abc abc
[a]b[a] - aba aba
[abc]b[abc] - abc abc
[abc]b[abd] - abd abd
a(b?c)+d - accd accd
(wee|week)(knights|night) - weeknights weeknights
(we|wee|week|frob)(knights|night|day) - weeknights weeknights
a[bc]d - xyzaaabcaababdacd abd
a[ab]c - aaabc abc
abc s abc abc
a* & b @b
# Let's have some fun -- try to match a C comment.
# first the obvious, which looks okay at first glance...
/\*.*\*/ - /*x*/ /*x*/
# but...
/\*.*\*/ - /*x*/y/*z*/ /*x*/y/*z*/
# okay, we must not match */ inside; try to do that...
/\*([^*]|\*[^/])*\*/ - /*x*/ /*x*/
/\*([^*]|\*[^/])*\*/ - /*x*/y/*z*/ /*x*/
# but...
/\*([^*]|\*[^/])*\*/ - /*x**/y/*z*/ /*x**/y/*z*/
# and a still fancier version, which does it right (I think)...
/\*([^*]|\*+[^*/])*\*+/ - /*x*/ /*x*/
/\*([^*]|\*+[^*/])*\*+/ - /*x*/y/*z*/ /*x*/
/\*([^*]|\*+[^*/])*\*+/ - /*x**/y/*z*/ /*x**/
/\*([^*]|\*+[^*/])*\*+/ - /*x****/y/*z*/ /*x****/
/\*([^*]|\*+[^*/])*\*+/ - /*x**x*/y/*z*/ /*x**x*/
/\*([^*]|\*+[^*/])*\*+/ - /*x***x/y/*z*/ /*x***x/y/*z*/
# subexpressions
.* - abc abc -
a(b)(c)d - abcd abcd b,c
a(((b)))c - abc abc b,b,b
a(b|(c))d - abd abd b,-
a(b*|c|e)d - abbd abbd bb
a(b*|c|e)d - acd acd c
a(b*|c|e)d - ad ad @d
a(b?)c - abc abc b
a(b?)c - ac ac @c
a(b+)c - abc abc b
a(b+)c - abbbc abbbc bbb
a(b*)c - ac ac @c
(a|ab)(bc([de]+)f|cde) - abcdef abcdef a,bcdef,de
# the regression tester only asks for 9 subexpressions
a(b)(c)(d)(e)(f)(g)(h)(i)(j)k - abcdefghijk abcdefghijk b,c,d,e,f,g,h,i,j
a(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)l - abcdefghijkl abcdefghijkl b,c,d,e,f,g,h,i,j,k
a([bc]?)c - abc abc b
a([bc]?)c - ac ac @c
a([bc]+)c - abc abc b
a([bc]+)c - abcc abcc bc
a([bc]+)bc - abcbc abcbc bc
a(bb+|b)b - abb abb b
a(bbb+|bb+|b)b - abb abb b
a(bbb+|bb+|b)b - abbb abbb bb
a(bbb+|bb+|b)bb - abbb abbb b
(.*).* - abcdef abcdef abcdef
(a*)* - bc @b @b
# do we get the right subexpression when it is used more than once?
a(b|c)*d - ad ad -
a(b|c)*d - abcd abcd c
a(b|c)+d - abd abd b
a(b|c)+d - abcd abcd c
a(b|c?)+d - ad ad @d
a(b|c?)+d - abcd abcd @d
a(b|c){0,0}d - ad ad -
a(b|c){0,1}d - ad ad -
a(b|c){0,1}d - abd abd b
a(b|c){0,2}d - ad ad -
a(b|c){0,2}d - abcd abcd c
a(b|c){0,}d - ad ad -
a(b|c){0,}d - abcd abcd c
a(b|c){1,1}d - abd abd b
a(b|c){1,1}d - acd acd c
a(b|c){1,2}d - abd abd b
a(b|c){1,2}d - abcd abcd c
a(b|c){1,}d - abd abd b
a(b|c){1,}d - abcd abcd c
a(b|c){2,2}d - acbd acbd b
a(b|c){2,2}d - abcd abcd c
a(b|c){2,4}d - abcd abcd c
a(b|c){2,4}d - abcbd abcbd b
a(b|c){2,4}d - abcbcd abcbcd c
a(b|c){2,}d - abcd abcd c
a(b|c){2,}d - abcbd abcbd b
a(b+|((c)*))+d - abd abd @d,@d,-
a(b+|((c)*))+d - abcd abcd @d,@d,-
# check out the STARTEND option
[abc] &# a(b)c b
[abc] &# a(d)c
[abc] &# a(bc)d b
[abc] &# a(dc)d c
. &# a()c
b.*c &# b(bc)c bc
b.* &# b(bc)c bc
.*c &# b(bc)c bc
# plain strings, with the NOSPEC flag
abc m abc abc
abc m xabcy abc
abc m xyz
a*b m aba*b a*b
a*b m ab
"" mC EMPTY
# cases involving NULs
aZb & a a
aZb &p a
aZb &p# (aZb) aZb
aZ*b &p# (ab) ab
a.b &# (aZb) aZb
a.* &# (aZb)c aZb
# word boundaries (ick)
[[:<:]]a & a a
[[:<:]]a & ba
[[:<:]]a & -a a
a[[:>:]] & a a
a[[:>:]] & ab
a[[:>:]] & a- a
[[:<:]]a.c[[:>:]] & axcd-dayc-dazce-abc abc
[[:<:]]a.c[[:>:]] & axcd-dayc-dazce-abc-q abc
[[:<:]]a.c[[:>:]] & axc-dayc-dazce-abc axc
[[:<:]]b.c[[:>:]] & a_bxc-byc_d-bzc-q bzc
[[:<:]].x..[[:>:]] & y_xa_-_xb_y-_xc_-axdc _xc_
[[:<:]]a_b[[:>:]] & x_a_b
# past problems, and suspected problems
(A[1])|(A[2])|(A[3])|(A[4])|(A[5])|(A[6])|(A[7])|(A[8])|(A[9])|(A[A]) - A1 A1
abcdefghijklmnop i abcdefghijklmnop abcdefghijklmnop
abcdefghijklmnopqrstuv i abcdefghijklmnopqrstuv abcdefghijklmnopqrstuv
(ALAK)|(ALT[AB])|(CC[123]1)|(CM[123]1)|(GAMC)|(LC[23][EO ])|(SEM[1234])|(SL[ES][12])|(SLWW)|(SLF )|(SLDT)|(VWH[12])|(WH[34][EW])|(WP1[ESN]) - CC11 CC11
CC[13]1|a{21}[23][EO][123][Es][12]a{15}aa[34][EW]aaaaaaa[X]a - CC11 CC11
Char \([a-z0-9_]*\)\[.* b Char xyz[k Char xyz[k xyz
a?b - ab ab
-\{0,1\}[0-9]*$ b -5 -5
a*a*a*a*a*a*a* & aaaaaa aaaaaa

View File

@@ -1,422 +0,0 @@
// -*- c++ -*- ///////////////////////////////////////////////////////////////
// Name: unix/net.cpp
// Purpose: Network related wxWindows classes and functions
// Author: Karsten Ball<6C>der
// Modified by:
// Created: 03.10.99
// RCS-ID: $Id$
// Copyright: (c) Karsten Ball<6C>der
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
#include "wx/setup.h"
#if wxUSE_DIALUP_MANAGER
#ifndef WX_PRECOMP
# include "wx/defs.h"
#endif // !PCH
#include "wx/string.h"
#include "wx/event.h"
#include "wx/net.h"
#include "wx/timer.h"
#include "wx/filefn.h"
#include "wx/utils.h"
#include "wx/log.h"
#include "wx/file.h"
#include <stdlib.h>
#include <signal.h>
#include <fcntl.h>
#include <unistd.h>
#define __STRICT_ANSI__
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
// ----------------------------------------------------------------------------
// A class which groups functions dealing with connecting to the network from a
// workstation using dial-up access to the net. There is at most one instance
// of this class in the program accessed via GetDialUpManager().
// ----------------------------------------------------------------------------
/* TODO
*
* 1. more configurability for Unix: i.e. how to initiate the connection, how
* to check for online status, &c.
* 2. add a "long Dial(long connectionId = -1)" function which asks the user
* about which connection to dial (this may be done using native dialogs
* under NT, need generic dialogs for all others) and returns the identifier
* of the selected connection (it's opaque to the application) - it may be
* reused later to dial the same connection later (or use strings instead of
* longs may be?)
* 3. add an async version of dialing functions which notify the caller about
* the progress (or may be even start another thread to monitor it)
* 4. the static creation/accessor functions are not MT-safe - but is this
* really crucial? I think we may suppose they're always called from the
* main thread?
*/
class WXDLLEXPORT wxDialUpManagerImpl : public wxDialUpManager
{
public:
wxDialUpManagerImpl()
{
m_IsOnline = -1; // unknown
m_timer = NULL;
m_CanUseIfconfig = -1; // unknown
m_BeaconHost = WXDIALUP_MANAGER_DEFAULT_BEACONHOST;
m_BeaconPort = 80;
}
/** Could the dialup manager be initialized correctly? If this function
returns FALSE, no other functions will work neither, so it's a good idea
to call this function and check its result before calling any other
wxDialUpManager methods.
*/
virtual bool IsOk() const
{ return TRUE; }
/** The simplest way to initiate a dial up: this function dials the given
ISP (exact meaning of the parameter depends on the platform), returns
TRUE on success or FALSE on failure and logs the appropriate error
message in the latter case.
@param nameOfISP optional paramater for dial program
@param username unused
@param password unused
*/
virtual bool Dial(const wxString& nameOfISP,
const wxString& WXUNUSED(username),
const wxString& WXUNUSED(password));
/// Hang up the currently active dial up connection.
virtual bool HangUp();
// returns TRUE if the computer is connected to the network: under Windows,
// this just means that a RAS connection exists, under Unix we check that
// the "well-known host" (as specified by SetWellKnownHost) is reachable
virtual bool IsOnline() const
{
if( (! m_timer) // we are not polling, so test now:
|| m_IsOnline == -1
)
CheckStatus();
return m_IsOnline != 0;
}
// sometimes the built-in logic for determining the online status may fail,
// so, in general, the user should be allowed to override it. This function
// allows to forcefully set the online status - whatever our internal
// algorithm may think about it.
virtual void SetOnlineStatus(bool isOnline = TRUE)
{ m_IsOnline = isOnline; }
// set misc wxDialUpManager options
// --------------------------------
// enable automatical checks for the connection status and sending of
// wxEVT_DIALUP_CONNECTED/wxEVT_DIALUP_DISCONNECTED events. The interval
// parameter is only for Unix where we do the check manually: under
// Windows, the notification about the change of connection status is
// instantenous.
//
// Returns FALSE if couldn't set up automatic check for online status.
virtual bool EnableAutoCheckOnlineStatus(size_t nSeconds);
// disable automatic check for connection status change - notice that the
// wxEVT_DIALUP_XXX events won't be sent any more neither.
virtual void DisableAutoCheckOnlineStatus();
// under Unix, the value of well-known host is used to check whether we're
// connected to the internet. It's unused under Windows, but this function
// is always safe to call. The default value is www.yahoo.com.
virtual void SetWellKnownHost(const wxString& hostname,
int portno = 80);
/** Sets the commands to start up the network and to hang up
again. Used by the Unix implementations only.
*/
virtual void SetConnectCommand(const wxString &command, const wxString &hupcmd)
{ m_ConnectCommand = command; m_HangUpCommand = hupcmd; }
private:
/// -1: don<6F>t know, 0 = no, 1 = yes
int m_IsOnline;
/// Can we use ifconfig to list active devices?
int m_CanUseIfconfig;
/// The path to ifconfig
wxString m_IfconfigPath;
/// beacon host:
wxString m_BeaconHost;
/// beacon host portnumber for connect:
int m_BeaconPort;
/// command to connect to network
wxString m_ConnectCommand;
/// command to hang up
wxString m_HangUpCommand;
/// name of ISP
wxString m_ISPname;
/// a timer for regular testing
class AutoCheckTimer *m_timer;
friend class AutoCheckTimer;
/// determine status
void CheckStatus(void) const;
/// real status check
void CheckStatusInternal(void);
};
class AutoCheckTimer : public wxTimer
{
public:
AutoCheckTimer(wxDialUpManagerImpl *dupman)
{
m_dupman = dupman;
m_started = FALSE;
}
virtual bool Start( int millisecs = -1 )
{ m_started = TRUE; return wxTimer::Start(millisecs, FALSE); }
virtual void Notify()
{ wxLogTrace("Checking dial up network status."); m_dupman->CheckStatus(); }
virtual void Stop()
{ if ( m_started ) wxTimer::Stop(); }
public:
bool m_started;
wxDialUpManagerImpl *m_dupman;
};
bool
wxDialUpManagerImpl::Dial(const wxString &isp,
const wxString & WXUNUSED(username),
const wxString & WXUNUSED(password))
{
if(m_IsOnline == 1)
return FALSE;
m_IsOnline = -1;
m_ISPname = isp;
wxString cmd;
if(m_ConnectCommand.Find("%s"))
cmd.Printf(m_ConnectCommand,m_ISPname.c_str());
else
cmd = m_ConnectCommand;
return wxExecute(cmd, /* sync */ TRUE) == 0;
}
bool
wxDialUpManagerImpl::HangUp(void)
{
if(m_IsOnline == 0)
return FALSE;
m_IsOnline = -1;
wxString cmd;
if(m_HangUpCommand.Find("%s"))
cmd.Printf(m_HangUpCommand,m_ISPname.c_str());
else
cmd = m_HangUpCommand;
return wxExecute(cmd, /* sync */ TRUE) == 0;
}
bool
wxDialUpManagerImpl::EnableAutoCheckOnlineStatus(size_t nSeconds)
{
wxASSERT(m_timer == NULL);
m_timer = new AutoCheckTimer(this);
bool rc = m_timer->Start(nSeconds*1000);
if(! rc)
{
delete m_timer;
m_timer = NULL;
}
return rc;
}
void
wxDialUpManagerImpl::DisableAutoCheckOnlineStatus()
{
wxASSERT(m_timer != NULL);
m_timer->Stop();
delete m_timer;
m_timer = NULL;
}
void
wxDialUpManagerImpl::SetWellKnownHost(const wxString& hostname, int portno)
{
/// does hostname contain a port number?
wxString port = hostname.After(':');
if(port.Length())
{
m_BeaconHost = hostname.Before(':');
m_BeaconPort = atoi(port);
}
else
{
m_BeaconHost = hostname;
m_BeaconPort = portno;
}
}
void
wxDialUpManagerImpl::CheckStatus(void) const
{
// This function calls the CheckStatusInternal() helper function
// which is OS - specific and then sends the events.
int oldIsOnline = m_IsOnline;
( /* non-const */ (wxDialUpManagerImpl *)this)->CheckStatusInternal();
// now send the events as appropriate:
if(m_IsOnline != oldIsOnline)
{
if(m_IsOnline)
; // send ev
else
; // send ev
}
}
/*
We have three methods that we can use:
1. test via /sbin/ifconfig and grep for "sl", "ppp", "pl"
--> should be fast enough for regular polling
2. test if we can reach the well known beacon host
--> too slow for polling
3. check /proc/net/dev on linux??
This method should be preferred, if possible. Need to do more
testing.
*/
void
wxDialUpManagerImpl::CheckStatusInternal(void)
{
m_IsOnline = -1;
// First time check for ifconfig location. We only use the variant
// which does not take arguments, a la GNU.
if(m_CanUseIfconfig == -1) // unknown
{
if(wxFileExists("/sbin/ifconfig"))
m_IfconfigPath = "/sbin/ifconfig";
else if(wxFileExists("/usr/sbin/ifconfig"))
m_IfconfigPath = "/usr/sbin/ifconfig";
}
wxLogNull ln; // suppress all error messages
// Let<65>s try the ifconfig method first, should be fastest:
if(m_CanUseIfconfig != 0) // unknown or yes
{
wxASSERT(m_IfconfigPath.length());
wxString tmpfile = wxGetTempFileName("_wxdialuptest");
wxString cmd = "/bin/sh -c \'";
cmd << m_IfconfigPath << " >" << tmpfile << '\'';
/* I tried to add an option to wxExecute() to not close stdout,
so we could let ifconfig write directly to the tmpfile, but
this does not work. That should be faster, as it doesn<73>t call
the shell first. I have no idea why. :-( (KB) */
#if 0
// temporarily redirect stdout/stderr:
int
new_stdout = dup(STDOUT_FILENO),
new_stderr = dup(STDERR_FILENO);
close(STDOUT_FILENO);
close(STDERR_FILENO);
int
// new stdout:
output_fd = open(tmpfile, O_CREAT|O_TRUNC, S_IRUSR|S_IWUSR),
// new stderr:
null_fd = open("/dev/null", O_CREAT, S_IRUSR|S_IWUSR);
// verify well behaved unix behaviour:
wxASSERT(output_fd == STDOUT_FILENO);
wxASSERT(null_fd == STDERR_FILENO);
int rc = wxExecute(m_IfconfigPath,TRUE /* sync */,NULL ,wxEXECUTE_DONT_CLOSE_FDS);
close(null_fd); close(output_fd);
// restore old stdout, stderr:
int test;
test = dup(new_stdout); close(new_stdout); wxASSERT(test == STDOUT_FILENO);
test = dup(new_stderr); close(new_stderr); wxASSERT(test == STDERR_FILENO);
if(rc == 0)
#endif
if(wxExecute(cmd,TRUE /* sync */) == 0)
{
m_CanUseIfconfig = 1;
wxFile file;
if( file.Open(tmpfile) )
{
char *output = new char [file.Length()+1];
output[file.Length()] = '\0';
if(file.Read(output,file.Length()) == file.Length())
{
if(strstr(output,"ppp") // ppp
|| strstr(output,"sl") // slip
|| strstr(output,"pl") // plip
)
m_IsOnline = 1;
else
m_IsOnline = 0;
}
file.Close();
delete [] output;
}
// else m_IsOnline remains -1 as we don't know for sure
}
else // could not run ifconfig correctly
m_CanUseIfconfig = 0; // don<6F>t try again
(void) wxRemoveFile(tmpfile);
if(m_IsOnline != -1) // we are done
return;
}
// second method: try to connect to well known host:
// This can be used under Win 9x, too!
struct hostent *hp;
struct sockaddr_in serv_addr;
int sockfd;
m_IsOnline = 0; // assume false
if((hp = gethostbyname(m_BeaconHost)) == NULL)
return; // no DNS no net
serv_addr.sin_family = hp->h_addrtype;
memcpy(&serv_addr.sin_addr,hp->h_addr, hp->h_length);
serv_addr.sin_port = htons(m_BeaconPort);
if( ( sockfd = socket(hp->h_addrtype, SOCK_STREAM, 0)) < 0)
{
// sys_error("cannot create socket for gw");
return;
}
if( connect(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0)
{
//sys_error("cannot connect to server");
return;
}
//connected!
close(sockfd);
}
/* static */
wxDialUpManager *
wxDialUpManager::wxDialUpManager::Create(void)
{
return new wxDialUpManagerImpl;
}
#endif // wxUSE_DIALUP_MANAGER

View File

@@ -1,339 +0,0 @@
#----------------------------------------------------------------------------
# Name: makefile.nt
# Purpose: Win32, VC++ 5 makefile for wxPython
#
# Author: Robin Dunn
#
# Created: 3/27/97
# RCS-ID: $Id$
# Copyright: (c) 1998 by Total Control Software
# Licence: wxWindows license
#----------------------------------------------------------------------------
VERSION=0.5.4
# Set WXDIR to the root wxWindows directory for your system
WXDIR = $(WXWIN)
# Set this to the root of the Python installation
PYTHONDIR=d:\Python
# Set this to 1 for a non-debug, optimised compile
FINAL=0
# Set this to where you want the stuff installed at. It should
# be a directory contained in a PYTHONPATH directory, and should be
# named wxPython
TARGETDIR=..
# Set this to 1 for make to pre-compile the Python modules, 0 to
# just copy the sources and let Python compile them at the first
# runtime.
COMPILEPY=0
SEPARATE=0
#----------------------------------------------------------------------
WXUSINGDLL=0
NOPCH=1
THISDIR=$(WXDIR)\utils\wxPython
EXTRALIBS=$(PYTHONDIR)\libs\python15.lib
EXTRAINC=-I$(PYTHONDIR)\include -I.
EXTRAFLAGS=/Fpwxp.pch /YXhelpers.h -DSWIG_GLOBAL -DHAVE_CONFIG_H
OVERRIDEFLAGS=/GX-
SWIGFLAGS=-c++ -shadow -python -dnone -D__WXMSW__
GENCODEDIR=msw
!include $(WXDIR)\src\ntwxwin.mak
#----------------------------------------------------------------------
TARGET = wxc
OBJECTS = wx.obj helpers.obj windows.obj events.obj \
misc.obj gdi.obj mdi.obj controls.obj \
controls2.obj windows2.obj cmndlgs.obj stattool.obj \
frames.obj windows3.obj \
!if "$(SEPARATE)" == "0"
utils.obj
!else
TARGET2 = utilsc
OBJECTS2 = utils.obj
target2=$(TARGETDIR)\$(TARGET2).pyd
!endif
PYMODULES = $(TARGETDIR)\wx.py $(TARGETDIR)\events.py \
$(TARGETDIR)\windows.py $(TARGETDIR)\misc.py \
$(TARGETDIR)\gdi.py $(TARGETDIR)\mdi.py \
$(TARGETDIR)\controls.py $(TARGETDIR)\controls2.py \
$(TARGETDIR)\windows2.py $(TARGETDIR)\cmndlgs.py \
$(TARGETDIR)\stattool.py $(TARGETDIR)\frames.py \
$(TARGETDIR)\utils.py $(TARGETDIR)\windows3.py \
$(TARGETDIR)\__init__.py
#----------------------------------------------------------------------
!if "$(FINAL)" == "0"
DEBUGLFLAGS = /DEBUG /INCREMENTAL:YES
!else
DEBUGLFLAGS = /INCREMENTAL:NO
!endif
LFLAGS= $(DEBUGLFLAGS) /DLL /def:$(TARGET).def /subsystem:windows,3.50 \
/machine:I386 /implib:./$(TARGET).lib /nologo
LFLAGS2=$(DEBUGLFLAGS) /DLL /def:$(TARGET2).def /subsystem:windows,3.50 \
/machine:I386 /implib:./$(TARGET2).lib /nologo
#----------------------------------------------------------------------
default: $(TARGETDIR)\$(TARGET).pyd $(target2) pycfiles
all: wx $(TARGET) $(TARGET2)
wx:
cd $(WXDIR)\src\msw
nmake -f makefile.nt FINAL=$(FINAL)
cd $(THISDIR)
wxclean:
cd $(WXDIR)\src\msw
nmake -f makefile.nt clean
cd $(THISDIR)
pycfiles : $(PYMODULES)
!if "$(COMPILEPY)" == "1"
$(PYTHONDIR)\python $(PYTHONDIR)\Lib\compileall.py -l $(TARGETDIR)
$(PYTHONDIR)\python -O $(PYTHONDIR)\Lib\compileall.py -l $(TARGETDIR)
!endif
#----------------------------------------------------------------------
$(TARGETDIR)\$(TARGET).pyd : $(DUMMYOBJ) $(WXLIB) $(OBJECTS) $(TARGET).res
$(link) @<<
/out:$@ /dll
$(LFLAGS)
$(DUMMYOBJ) $(OBJECTS) $(TARGET).res
$(LIBS)
<<
$(TARGETDIR)\$(TARGET2).pyd : $(DUMMYOBJ) $(WXLIB) $(OBJECTS2)
$(link) @<<
/out:$@ /dll
$(LFLAGS2)
$(DUMMYOBJ) $(OBJECTS2)
$(LIBS)
<<
$(TARGET).res : $(TARGET).rc $(WXDIR)\include\wx\msw\wx.rc
$(rc) -r /i$(WXDIR)\include -fo$@ $(TARGET).rc
# implicit rule for compiling .cpp files
{}.cpp{}.obj:
$(cc) @<<
$(CPPFLAGS) /c /Tp $<
<<
{$(GENCODEDIR)}.cpp{}.obj:
$(cc) @<<
$(CPPFLAGS) /c /Tp $<
<<
clean:
-erase *.obj
-erase *.exe
-erase *.res
-erase *.map
-erase *.sbr
-erase *.pdb
-erase *.pch
-erase $(TARGET).exp
-erase $(TARGET).lib
-erase $(TARGETDIR)\$(TARGET).*
!if "$(SEPARATE)" != "0"
-erase $(TARGET2).exp
-erase $(TARGET2).lib
-erase $(TARGETDIR)\$(TARGET2).*
!endif
-erase $(TARGETDIR)\$(TARGET).pyd
-erase $(TARGETDIR)\*.py
-erase $(TARGETDIR)\*.pyc
-erase $(TARGETDIR)\*.pyo
#------------------------------------------------------------------------
.SUFFIXES : .i .py
# Implicit rules to run SWIG
{}.i{$(GENCODEDIR)}.cpp:
swig $(SWIGFLAGS) -c -o $@ $<
{}.i{$(GENCODEDIR)}.py:
swig $(SWIGFLAGS) -c -o $@ $<
{$(GENCODEDIR)}.py{$(TARGETDIR)}.py:
copy $< $@
{}.py{$(TARGETDIR)}.py:
copy $< $@
#{}.py{$(TARGETDIR)}.$(PYEXT):
# $(PYTHON) -c "import py_compile; py_compile.compile('$<', '$@')"
# This one must leave out the -c flag so we define the whole rule
$(GENCODEDIR)\wx.cpp $(GENCODEDIR)\wx.py : wx.i my_typemaps.i _defs.i _extras.py
swig $(SWIGFLAGS) -o $(GENCODEDIR)/wx.cpp wx.i
# Define some dependencies. These MUST use forward slashes so SWIG
# will write the shadow file to the right directory.
$(GENCODEDIR)/windows.cpp $(GENCODEDIR)/windows.py : windows.i my_typemaps.i _defs.i
$(GENCODEDIR)/windows2.cpp $(GENCODEDIR)/windows2.py : windows2.i my_typemaps.i _defs.i
$(GENCODEDIR)/windows3.cpp $(GENCODEDIR)/windows3.py : windows3.i my_typemaps.i _defs.i
$(GENCODEDIR)/events.cpp $(GENCODEDIR)/events.py : events.i my_typemaps.i _defs.i
$(GENCODEDIR)/misc.cpp $(GENCODEDIR)/misc.py : misc.i my_typemaps.i _defs.i
$(GENCODEDIR)/gdi.cpp $(GENCODEDIR)/gdi.py : gdi.i my_typemaps.i _defs.i
$(GENCODEDIR)/mdi.cpp $(GENCODEDIR)/mdi.py : mdi.i my_typemaps.i _defs.i
$(GENCODEDIR)/controls.cpp $(GENCODEDIR)/controls.py : controls.i my_typemaps.i _defs.i
$(GENCODEDIR)/controls2.cpp $(GENCODEDIR)/controls2.py : controls2.i my_typemaps.i _defs.i
$(GENCODEDIR)/cmndlgs.cpp $(GENCODEDIR)/cmndlgs.py : cmndlgs.i my_typemaps.i _defs.i
$(GENCODEDIR)/stattool.cpp $(GENCODEDIR)/stattool.py : stattool.i my_typemaps.i _defs.i
$(GENCODEDIR)/frames.cpp $(GENCODEDIR)/frames.py : frames.i my_typemaps.i _defs.i
!if "$(SEPARATE)" == "1"
$(GENCODEDIR)\utils.cpp $(GENCODEDIR)\utils.py : utils.i my_typemaps.i
swig $(SWIGFLAGS) -o $(GENCODEDIR)/utils.cpp utils.i
!else
$(GENCODEDIR)/utils.cpp $(GENCODEDIR)/utils.py : utils.i my_typemaps.i _defs.i
!endif
$(TARGETDIR)\wx.py : $(GENCODEDIR)\wx.py
$(TARGETDIR)\windows.py : $(GENCODEDIR)\windows.py
$(TARGETDIR)\windows2.py : $(GENCODEDIR)\windows2.py
$(TARGETDIR)\windows3.py : $(GENCODEDIR)\windows3.py
$(TARGETDIR)\events.py : $(GENCODEDIR)\events.py
$(TARGETDIR)\misc.py : $(GENCODEDIR)\misc.py
$(TARGETDIR)\gdi.py : $(GENCODEDIR)\gdi.py
$(TARGETDIR)\mdi.py : $(GENCODEDIR)\mdi.py
$(TARGETDIR)\controls.py : $(GENCODEDIR)\controls.py
$(TARGETDIR)\controls2.py : $(GENCODEDIR)\controls2.py
$(TARGETDIR)\cmndlgs.py : $(GENCODEDIR)\cmndlgs.py
$(TARGETDIR)\frames.py : $(GENCODEDIR)\frames.py
$(TARGETDIR)\stattool.py : $(GENCODEDIR)\stattool.py
$(TARGETDIR)\utils.py : $(GENCODEDIR)\utils.py
$(TARGETDIR)\__init__.py : __init__.py
SOURCES = $(GENCODEDIR)\wx.cpp $(GENCODEDIR)\wx.py \
$(GENCODEDIR)/windows.cpp $(GENCODEDIR)/windows.py \
$(GENCODEDIR)/windows2.cpp $(GENCODEDIR)/windows2.py \
$(GENCODEDIR)/windows3.cpp $(GENCODEDIR)/windows3.py \
$(GENCODEDIR)/events.cpp $(GENCODEDIR)/events.py \
$(GENCODEDIR)/misc.cpp $(GENCODEDIR)/misc.py \
$(GENCODEDIR)/gdi.cpp $(GENCODEDIR)/gdi.py \
$(GENCODEDIR)/mdi.cpp $(GENCODEDIR)/mdi.py \
$(GENCODEDIR)/controls.cpp $(GENCODEDIR)/controls.py \
$(GENCODEDIR)/controls2.cpp $(GENCODEDIR)/controls2.py\
$(GENCODEDIR)/cmndlgs.cpp $(GENCODEDIR)/cmndlgs.py \
$(GENCODEDIR)/stattool.cpp $(GENCODEDIR)/stattool.py \
$(GENCODEDIR)/frames.cpp $(GENCODEDIR)/frames.py \
$(GENCODEDIR)/utils.cpp $(GENCODEDIR)/utils.py \
sources : $(SOURCES)
dist:
cd ..\..
wxPython\distrib\zipit.bat $(VERSION)
#------------------------------------------------------------------------
#
# $Log$
# Revision 1.12 1999/06/28 21:39:47 VZ
# 1. wxStaticLine implemented (generic (ugly) and MSW versions)
# 2. wxTextDialog looks fine under MSW again
# 3. startup tips added: code, sample, docs
# 4. read-only text controls don't participate in TAB traversal
#
# Revision 1.11 1999/02/06 23:47:02 RD
#
# Changing makefile.nt to makefile.vc as in rest of wxWindows
#
# Revision 1.10 1999/02/01 00:10:40 RD
#
# Added the missing EVT_LIST_ITEM_SELECTED and friends.
#
# Revision 1.9 1999/01/30 07:30:13 RD
#
# Added wxSashWindow, wxSashEvent, wxLayoutAlgorithm, etc.
#
# Various cleanup, tweaks, minor additions, etc. to maintain
# compatibility with the current wxWindows.
#
# Revision 1.8 1998/12/21 19:58:06 RD
#
# Now compiles with /GX- on MSW.
#
# Revision 1.7 1998/12/15 20:41:20 RD
# Changed the import semantics from "from wxPython import *" to "from
# wxPython.wx import *" This is for people who are worried about
# namespace pollution, they can use "from wxPython import wx" and then
# prefix all the wxPython identifiers with "wx."
#
# Added wxTaskbarIcon for wxMSW.
#
# Made the events work for wxGrid.
#
# Added wxConfig.
#
# Added wxMiniFrame for wxGTK, (untested.)
#
# Changed many of the args and return values that were pointers to gdi
# objects to references to reflect changes in the wxWindows API.
#
# Other assorted fixes and additions.
#
# Revision 1.6 1998/10/02 06:40:41 RD
#
# Version 0.4 of wxPython for MSW.
#
# Revision 1.5 1998/08/19 00:38:23 RD
#
# A few tweaks
#
# Revision 1.4 1998/08/18 21:55:10 RD
#
# New build directory structure
#
# Revision 1.3 1998/08/15 07:36:37 RD
# - Moved the header in the .i files out of the code that gets put into
# the .cpp files. It caused CVS conflicts because of the RCS ID being
# different each time.
#
# - A few minor fixes.
#
# Revision 1.2 1998/08/14 03:34:23 RD
# made pre-compiling the python files optional
#
# Revision 1.1 1998/08/09 08:25:51 RD
# Initial version
#

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff