Added wxMMedia2: it should work on linux (wave read/write, aiff read only)
      I begin to write windows driver now
Added some file to filelist.txt
Make configure build wxMMedia2 makefiles
git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@3381 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
		
	
		
			
				
	
	
		
			284 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * This source code is a product of Sun Microsystems, Inc. and is provided
 | 
						|
 * for unrestricted use.  Users may copy or modify this source code without
 | 
						|
 * charge.
 | 
						|
 *
 | 
						|
 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
 | 
						|
 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
 | 
						|
 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
 | 
						|
 *
 | 
						|
 * Sun source code is provided with no support and without any obligation on
 | 
						|
 * the part of Sun Microsystems, Inc. to assist in its use, correction,
 | 
						|
 * modification or enhancement.
 | 
						|
 *
 | 
						|
 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
 | 
						|
 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
 | 
						|
 * OR ANY PART THEREOF.
 | 
						|
 *
 | 
						|
 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
 | 
						|
 * or profits or other special, indirect and consequential damages, even if
 | 
						|
 * Sun has been advised of the possibility of such damages.
 | 
						|
 *
 | 
						|
 * Sun Microsystems, Inc.
 | 
						|
 * 2550 Garcia Avenue
 | 
						|
 * Mountain View, California  94043
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * g711.c
 | 
						|
 *
 | 
						|
 * u-law, A-law and linear PCM conversions.
 | 
						|
 */
 | 
						|
#define	SIGN_BIT	(0x80)		/* Sign bit for a A-law byte. */
 | 
						|
#define	QUANT_MASK	(0xf)		/* Quantization field mask. */
 | 
						|
#define	NSEGS		(8)		/* Number of A-law segments. */
 | 
						|
#define	SEG_SHIFT	(4)		/* Left shift for segment number. */
 | 
						|
#define	SEG_MASK	(0x70)		/* Segment field mask. */
 | 
						|
 | 
						|
static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,
 | 
						|
			    0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};
 | 
						|
 | 
						|
/* copy from CCITT G.711 specifications */
 | 
						|
unsigned char _u2a[128] = {			/* u- to A-law conversions */
 | 
						|
	1,	1,	2,	2,	3,	3,	4,	4,
 | 
						|
	5,	5,	6,	6,	7,	7,	8,	8,
 | 
						|
	9,	10,	11,	12,	13,	14,	15,	16,
 | 
						|
	17,	18,	19,	20,	21,	22,	23,	24,
 | 
						|
	25,	27,	29,	31,	33,	34,	35,	36,
 | 
						|
	37,	38,	39,	40,	41,	42,	43,	44,
 | 
						|
	46,	48,	49,	50,	51,	52,	53,	54,
 | 
						|
	55,	56,	57,	58,	59,	60,	61,	62,
 | 
						|
	64,	65,	66,	67,	68,	69,	70,	71,
 | 
						|
	72,	73,	74,	75,	76,	77,	78,	79,
 | 
						|
	81,	82,	83,	84,	85,	86,	87,	88,
 | 
						|
	89,	90,	91,	92,	93,	94,	95,	96,
 | 
						|
	97,	98,	99,	100,	101,	102,	103,	104,
 | 
						|
	105,	106,	107,	108,	109,	110,	111,	112,
 | 
						|
	113,	114,	115,	116,	117,	118,	119,	120,
 | 
						|
	121,	122,	123,	124,	125,	126,	127,	128};
 | 
						|
 | 
						|
unsigned char _a2u[128] = {			/* A- to u-law conversions */
 | 
						|
	1,	3,	5,	7,	9,	11,	13,	15,
 | 
						|
	16,	17,	18,	19,	20,	21,	22,	23,
 | 
						|
	24,	25,	26,	27,	28,	29,	30,	31,
 | 
						|
	32,	32,	33,	33,	34,	34,	35,	35,
 | 
						|
	36,	37,	38,	39,	40,	41,	42,	43,
 | 
						|
	44,	45,	46,	47,	48,	48,	49,	49,
 | 
						|
	50,	51,	52,	53,	54,	55,	56,	57,
 | 
						|
	58,	59,	60,	61,	62,	63,	64,	64,
 | 
						|
	65,	66,	67,	68,	69,	70,	71,	72,
 | 
						|
	73,	74,	75,	76,	77,	78,	79,	79,
 | 
						|
	80,	81,	82,	83,	84,	85,	86,	87,
 | 
						|
	88,	89,	90,	91,	92,	93,	94,	95,
 | 
						|
	96,	97,	98,	99,	100,	101,	102,	103,
 | 
						|
	104,	105,	106,	107,	108,	109,	110,	111,
 | 
						|
	112,	113,	114,	115,	116,	117,	118,	119,
 | 
						|
	120,	121,	122,	123,	124,	125,	126,	127};
 | 
						|
 | 
						|
static int
 | 
						|
search(
 | 
						|
	int		val,
 | 
						|
	short		*table,
 | 
						|
	int		size)
 | 
						|
{
 | 
						|
	int		i;
 | 
						|
 | 
						|
	for (i = 0; i < size; i++) {
 | 
						|
		if (val <= *table++)
 | 
						|
			return (i);
 | 
						|
	}
 | 
						|
	return (size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law
 | 
						|
 *
 | 
						|
 * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.
 | 
						|
 *
 | 
						|
 *		Linear Input Code	Compressed Code
 | 
						|
 *	------------------------	---------------
 | 
						|
 *	0000000wxyza			000wxyz
 | 
						|
 *	0000001wxyza			001wxyz
 | 
						|
 *	000001wxyzab			010wxyz
 | 
						|
 *	00001wxyzabc			011wxyz
 | 
						|
 *	0001wxyzabcd			100wxyz
 | 
						|
 *	001wxyzabcde			101wxyz
 | 
						|
 *	01wxyzabcdef			110wxyz
 | 
						|
 *	1wxyzabcdefg			111wxyz
 | 
						|
 *
 | 
						|
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 | 
						|
 * John Wiley & Sons, pps 98-111 and 472-476.
 | 
						|
 */
 | 
						|
unsigned char
 | 
						|
linear2alaw(
 | 
						|
	int		pcm_val)	/* 2's complement (16-bit range) */
 | 
						|
{
 | 
						|
	int		mask;
 | 
						|
	int		seg;
 | 
						|
	unsigned char	aval;
 | 
						|
 | 
						|
	if (pcm_val >= 0) {
 | 
						|
		mask = 0xD5;		/* sign (7th) bit = 1 */
 | 
						|
	} else {
 | 
						|
		mask = 0x55;		/* sign bit = 0 */
 | 
						|
		pcm_val = -pcm_val - 8;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Convert the scaled magnitude to segment number. */
 | 
						|
	seg = search(pcm_val, seg_end, 8);
 | 
						|
 | 
						|
	/* Combine the sign, segment, and quantization bits. */
 | 
						|
 | 
						|
	if (seg >= 8)		/* out of range, return maximum value. */
 | 
						|
		return (0x7F ^ mask);
 | 
						|
	else {
 | 
						|
		aval = seg << SEG_SHIFT;
 | 
						|
		if (seg < 2)
 | 
						|
			aval |= (pcm_val >> 4) & QUANT_MASK;
 | 
						|
		else
 | 
						|
			aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;
 | 
						|
		return (aval ^ mask);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * alaw2linear() - Convert an A-law value to 16-bit linear PCM
 | 
						|
 *
 | 
						|
 */
 | 
						|
int
 | 
						|
alaw2linear(
 | 
						|
	unsigned char	a_val)
 | 
						|
{
 | 
						|
	int		t;
 | 
						|
	int		seg;
 | 
						|
 | 
						|
	a_val ^= 0x55;
 | 
						|
 | 
						|
	t = (a_val & QUANT_MASK) << 4;
 | 
						|
	seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;
 | 
						|
	switch (seg) {
 | 
						|
	case 0:
 | 
						|
		t += 8;
 | 
						|
		break;
 | 
						|
	case 1:
 | 
						|
		t += 0x108;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		t += 0x108;
 | 
						|
		t <<= seg - 1;
 | 
						|
	}
 | 
						|
	return ((a_val & SIGN_BIT) ? t : -t);
 | 
						|
}
 | 
						|
 | 
						|
#define	BIAS		(0x84)		/* Bias for linear code. */
 | 
						|
 | 
						|
/*
 | 
						|
 * linear2ulaw() - Convert a linear PCM value to u-law
 | 
						|
 *
 | 
						|
 * In order to simplify the encoding process, the original linear magnitude
 | 
						|
 * is biased by adding 33 which shifts the encoding range from (0 - 8158) to
 | 
						|
 * (33 - 8191). The result can be seen in the following encoding table:
 | 
						|
 *
 | 
						|
 *	Biased Linear Input Code	Compressed Code
 | 
						|
 *	------------------------	---------------
 | 
						|
 *	00000001wxyza			000wxyz
 | 
						|
 *	0000001wxyzab			001wxyz
 | 
						|
 *	000001wxyzabc			010wxyz
 | 
						|
 *	00001wxyzabcd			011wxyz
 | 
						|
 *	0001wxyzabcde			100wxyz
 | 
						|
 *	001wxyzabcdef			101wxyz
 | 
						|
 *	01wxyzabcdefg			110wxyz
 | 
						|
 *	1wxyzabcdefgh			111wxyz
 | 
						|
 *
 | 
						|
 * Each biased linear code has a leading 1 which identifies the segment
 | 
						|
 * number. The value of the segment number is equal to 7 minus the number
 | 
						|
 * of leading 0's. The quantization interval is directly available as the
 | 
						|
 * four bits wxyz.  * The trailing bits (a - h) are ignored.
 | 
						|
 *
 | 
						|
 * Ordinarily the complement of the resulting code word is used for
 | 
						|
 * transmission, and so the code word is complemented before it is returned.
 | 
						|
 *
 | 
						|
 * For further information see John C. Bellamy's Digital Telephony, 1982,
 | 
						|
 * John Wiley & Sons, pps 98-111 and 472-476.
 | 
						|
 */
 | 
						|
unsigned char
 | 
						|
linear2ulaw(
 | 
						|
	int		pcm_val)	/* 2's complement (16-bit range) */
 | 
						|
{
 | 
						|
	int		mask;
 | 
						|
	int		seg;
 | 
						|
	unsigned char	uval;
 | 
						|
 | 
						|
	/* Get the sign and the magnitude of the value. */
 | 
						|
	if (pcm_val < 0) {
 | 
						|
		pcm_val = BIAS - pcm_val;
 | 
						|
		mask = 0x7F;
 | 
						|
	} else {
 | 
						|
		pcm_val += BIAS;
 | 
						|
		mask = 0xFF;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Convert the scaled magnitude to segment number. */
 | 
						|
	seg = search(pcm_val, seg_end, 8);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Combine the sign, segment, quantization bits;
 | 
						|
	 * and complement the code word.
 | 
						|
	 */
 | 
						|
	if (seg >= 8)		/* out of range, return maximum value. */
 | 
						|
		return (0x7F ^ mask);
 | 
						|
	else {
 | 
						|
		uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);
 | 
						|
		return (uval ^ mask);
 | 
						|
	}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ulaw2linear() - Convert a u-law value to 16-bit linear PCM
 | 
						|
 *
 | 
						|
 * First, a biased linear code is derived from the code word. An unbiased
 | 
						|
 * output can then be obtained by subtracting 33 from the biased code.
 | 
						|
 *
 | 
						|
 * Note that this function expects to be passed the complement of the
 | 
						|
 * original code word. This is in keeping with ISDN conventions.
 | 
						|
 */
 | 
						|
int
 | 
						|
ulaw2linear(
 | 
						|
	unsigned char	u_val)
 | 
						|
{
 | 
						|
	int		t;
 | 
						|
 | 
						|
	/* Complement to obtain normal u-law value. */
 | 
						|
	u_val = ~u_val;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Extract and bias the quantization bits. Then
 | 
						|
	 * shift up by the segment number and subtract out the bias.
 | 
						|
	 */
 | 
						|
	t = ((u_val & QUANT_MASK) << 3) + BIAS;
 | 
						|
	t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;
 | 
						|
 | 
						|
	return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));
 | 
						|
}
 | 
						|
 | 
						|
/* A-law to u-law conversion */
 | 
						|
unsigned char
 | 
						|
alaw2ulaw(
 | 
						|
	unsigned char	aval)
 | 
						|
{
 | 
						|
	aval &= 0xff;
 | 
						|
	return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :
 | 
						|
	    (0x7F ^ _a2u[aval ^ 0x55]));
 | 
						|
}
 | 
						|
 | 
						|
/* u-law to A-law conversion */
 | 
						|
unsigned char
 | 
						|
ulaw2alaw(
 | 
						|
	unsigned char	uval)
 | 
						|
{
 | 
						|
	uval &= 0xff;
 | 
						|
	return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :
 | 
						|
	    (0x55 ^ (_u2a[0x7F ^ uval] - 1)));
 | 
						|
}
 |