git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@29265 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
		
			
				
	
	
		
			416 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			416 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# -*- coding: iso-8859-1 -*-
 | 
						|
#----------------------------------------------------------------------------
 | 
						|
# Name:         oglmisc.py
 | 
						|
# Purpose:      Miscellaneous OGL support functions
 | 
						|
#
 | 
						|
# Author:       Pierre Hjälm (from C++ original by Julian Smart)
 | 
						|
#
 | 
						|
# Created:      2004-05-08
 | 
						|
# RCS-ID:       $Id$
 | 
						|
# Copyright:    (c) 2004 Pierre Hjälm - 1998 Julian Smart
 | 
						|
# Licence:      wxWindows license
 | 
						|
#----------------------------------------------------------------------------
 | 
						|
 | 
						|
import math
 | 
						|
 | 
						|
import wx
 | 
						|
 | 
						|
# Control point types
 | 
						|
# Rectangle and most other shapes
 | 
						|
CONTROL_POINT_VERTICAL = 1
 | 
						|
CONTROL_POINT_HORIZONTAL = 2
 | 
						|
CONTROL_POINT_DIAGONAL = 3
 | 
						|
 | 
						|
# Line
 | 
						|
CONTROL_POINT_ENDPOINT_TO = 4
 | 
						|
CONTROL_POINT_ENDPOINT_FROM = 5
 | 
						|
CONTROL_POINT_LINE = 6
 | 
						|
 | 
						|
# Types of formatting: can be combined in a bit list
 | 
						|
FORMAT_NONE = 0             # Left justification
 | 
						|
FORMAT_CENTRE_HORIZ = 1     # Centre horizontally
 | 
						|
FORMAT_CENTRE_VERT = 2      # Centre vertically
 | 
						|
FORMAT_SIZE_TO_CONTENTS = 4 # Resize shape to contents
 | 
						|
 | 
						|
# Attachment modes
 | 
						|
ATTACHMENT_MODE_NONE, ATTACHMENT_MODE_EDGE, ATTACHMENT_MODE_BRANCHING = 0, 1, 2
 | 
						|
 | 
						|
# Shadow mode
 | 
						|
SHADOW_NONE, SHADOW_LEFT, SHADOW_RIGHT = 0, 1, 2
 | 
						|
 | 
						|
OP_CLICK_LEFT, OP_CLICK_RIGHT, OP_DRAG_LEFT, OP_DRAG_RIGHT = 1, 2, 4, 8
 | 
						|
OP_ALL = OP_CLICK_LEFT | OP_CLICK_RIGHT | OP_DRAG_LEFT | OP_DRAG_RIGHT
 | 
						|
 | 
						|
# Sub-modes for branching attachment mode
 | 
						|
BRANCHING_ATTACHMENT_NORMAL = 1
 | 
						|
BRANCHING_ATTACHMENT_BLOB = 2
 | 
						|
 | 
						|
# logical function to use when drawing rubberband boxes, etc.
 | 
						|
OGLRBLF = wx.INVERT
 | 
						|
 | 
						|
CONTROL_POINT_SIZE = 6
 | 
						|
 | 
						|
# Types of arrowhead
 | 
						|
# (i) Built-in
 | 
						|
ARROW_HOLLOW_CIRCLE   = 1
 | 
						|
ARROW_FILLED_CIRCLE   = 2
 | 
						|
ARROW_ARROW           = 3
 | 
						|
ARROW_SINGLE_OBLIQUE  = 4
 | 
						|
ARROW_DOUBLE_OBLIQUE  = 5
 | 
						|
# (ii) Custom
 | 
						|
ARROW_METAFILE        = 20
 | 
						|
 | 
						|
# Position of arrow on line
 | 
						|
ARROW_POSITION_START  = 0
 | 
						|
ARROW_POSITION_END    = 1
 | 
						|
ARROW_POSITION_MIDDLE = 2
 | 
						|
 | 
						|
# Line alignment flags
 | 
						|
# Vertical by default
 | 
						|
LINE_ALIGNMENT_HORIZ              = 1
 | 
						|
LINE_ALIGNMENT_VERT               = 0
 | 
						|
LINE_ALIGNMENT_TO_NEXT_HANDLE     = 2
 | 
						|
LINE_ALIGNMENT_NONE               = 0
 | 
						|
 | 
						|
 | 
						|
 | 
						|
# Format a string to a list of strings that fit in the given box.
 | 
						|
# Interpret %n and 10 or 13 as a new line.
 | 
						|
def FormatText(dc, text, width, height, formatMode):
 | 
						|
    i = 0
 | 
						|
    word = ""
 | 
						|
    word_list = []
 | 
						|
    end_word = False
 | 
						|
    new_line = False
 | 
						|
    while i < len(text):
 | 
						|
        if text[i] == "%":
 | 
						|
            i += 1
 | 
						|
            if i == len(text):
 | 
						|
                word += "%"
 | 
						|
            else:
 | 
						|
                if text[i] == "n":
 | 
						|
                    new_line = True
 | 
						|
                    end_word = True
 | 
						|
                    i += 1
 | 
						|
                else:
 | 
						|
                    word += "%" + text[i]
 | 
						|
                    i += 1
 | 
						|
        elif text[i] in ["\012","\015"]:
 | 
						|
            new_line = True
 | 
						|
            end_word = True
 | 
						|
            i += 1
 | 
						|
        elif text[i] == " ":
 | 
						|
            end_word = True
 | 
						|
            i += 1
 | 
						|
        else:
 | 
						|
            word += text[i]
 | 
						|
            i += 1
 | 
						|
 | 
						|
        if i == len(text):
 | 
						|
            end_word = True
 | 
						|
 | 
						|
        if end_word:
 | 
						|
            word_list.append(word)
 | 
						|
            word = ""
 | 
						|
            end_word = False
 | 
						|
        if new_line:
 | 
						|
            word_list.append(None)
 | 
						|
            new_line = False
 | 
						|
 | 
						|
    # Now, make a list of strings which can fit in the box
 | 
						|
    string_list = []
 | 
						|
    buffer = ""
 | 
						|
    for s in word_list:
 | 
						|
        oldBuffer = buffer
 | 
						|
        if s is None:
 | 
						|
            # FORCE NEW LINE
 | 
						|
            if len(buffer) > 0:
 | 
						|
                string_list.append(buffer)
 | 
						|
            buffer = ""
 | 
						|
        else:
 | 
						|
            if len(buffer):
 | 
						|
                buffer += " "
 | 
						|
            buffer += s
 | 
						|
            x, y = dc.GetTextExtent(buffer)
 | 
						|
 | 
						|
            # Don't fit within the bounding box if we're fitting
 | 
						|
            # shape to contents
 | 
						|
            if (x > width) and not (formatMode & FORMAT_SIZE_TO_CONTENTS):
 | 
						|
                # Deal with first word being wider than box
 | 
						|
                if len(oldBuffer):
 | 
						|
                    string_list.append(oldBuffer)
 | 
						|
                buffer = s
 | 
						|
    if len(buffer):
 | 
						|
        string_list.append(buffer)
 | 
						|
 | 
						|
    return string_list
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def GetCentredTextExtent(dc, text_list, xpos = 0, ypos = 0, width = 0, height = 0):
 | 
						|
    if not text_list:
 | 
						|
        return 0, 0
 | 
						|
 | 
						|
    max_width = 0
 | 
						|
    for line in text_list:
 | 
						|
        current_width, char_height = dc.GetTextExtent(line.GetText())
 | 
						|
        if current_width > max_width:
 | 
						|
            max_width = current_width
 | 
						|
 | 
						|
    return max_width, len(text_list) * char_height
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def CentreText(dc, text_list, xpos, ypos, width, height, formatMode):
 | 
						|
    if not text_list:
 | 
						|
        return
 | 
						|
 | 
						|
    # First, get maximum dimensions of box enclosing text
 | 
						|
    char_height = 0
 | 
						|
    max_width = 0
 | 
						|
    current_width = 0
 | 
						|
 | 
						|
    # Store text extents for speed
 | 
						|
    widths = []
 | 
						|
    for line in text_list:
 | 
						|
        current_width, char_height = dc.GetTextExtent(line.GetText())
 | 
						|
        widths.append(current_width)
 | 
						|
        if current_width > max_width:
 | 
						|
            max_width = current_width
 | 
						|
 | 
						|
    max_height = len(text_list) * char_height
 | 
						|
 | 
						|
    if formatMode & FORMAT_CENTRE_VERT:
 | 
						|
        if max_height < height:
 | 
						|
            yoffset = ypos - height / 2.0 + (height - max_height) / 2.0
 | 
						|
        else:
 | 
						|
            yoffset = ypos - height / 2.0
 | 
						|
        yOffset = ypos
 | 
						|
    else:
 | 
						|
        yoffset = 0.0
 | 
						|
        yOffset = 0.0
 | 
						|
 | 
						|
    if formatMode & FORMAT_CENTRE_HORIZ:
 | 
						|
        xoffset = xpos - width / 2.0
 | 
						|
        xOffset = xpos
 | 
						|
    else:
 | 
						|
        xoffset = 0.0
 | 
						|
        xOffset = 0.0
 | 
						|
 | 
						|
    for i, line in enumerate(text_list):
 | 
						|
        if formatMode & FORMAT_CENTRE_HORIZ and widths[i] < width:
 | 
						|
            x = (width - widths[i]) / 2.0 + xoffset
 | 
						|
        else:
 | 
						|
            x = xoffset
 | 
						|
        y = i * char_height + yoffset
 | 
						|
 | 
						|
        line.SetX(x - xOffset)
 | 
						|
        line.SetY(y - yOffset)
 | 
						|
        
 | 
						|
 | 
						|
 | 
						|
def DrawFormattedText(dc, text_list, xpos, ypos, width, height, formatMode):
 | 
						|
    if formatMode & FORMAT_CENTRE_HORIZ:
 | 
						|
        xoffset = xpos
 | 
						|
    else:
 | 
						|
        xoffset = xpos - width / 2.0
 | 
						|
 | 
						|
    if formatMode & FORMAT_CENTRE_VERT:
 | 
						|
        yoffset = ypos
 | 
						|
    else:
 | 
						|
        yoffset = ypos - height / 2.0
 | 
						|
 | 
						|
    # +1 to allow for rounding errors
 | 
						|
    dc.SetClippingRegion(xpos - width / 2.0, ypos - height / 2.0, width + 1, height + 1)
 | 
						|
 | 
						|
    for line in text_list:
 | 
						|
        dc.DrawText(line.GetText(), xoffset + line.GetX(), yoffset + line.GetY())
 | 
						|
 | 
						|
    dc.DestroyClippingRegion()
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def RoughlyEqual(val1, val2, tol = 0.00001):
 | 
						|
    return val1 < (val2 + tol) and val1 > (val2 - tol) and \
 | 
						|
           val2 < (val1 + tol) and val2 > (val1 - tol)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def FindEndForBox(width, height, x1, y1, x2, y2):
 | 
						|
    xvec = [x1 - width / 2.0, x1 - width / 2.0, x1 + width / 2.0, x1 + width / 2.0, x1 - width / 2.0]
 | 
						|
    yvec = [y1 - height / 2.0, y1 + height / 2.0, y1 + height / 2.0, y1 - height / 2.0, y1 - height / 2.0]
 | 
						|
 | 
						|
    return FindEndForPolyline(xvec, yvec, x2, y2, x1, y1)
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def CheckLineIntersection(x1, y1, x2, y2, x3, y3, x4, y4):
 | 
						|
    denominator_term = (y4 - y3) * (x2 - x1) - (y2 - y1) * (x4 - x3)
 | 
						|
    numerator_term = (x3 - x1) * (y4 - y3) + (x4 - x3) * (y1 - y3)
 | 
						|
 | 
						|
    length_ratio = 1.0
 | 
						|
    k_line = 1.0
 | 
						|
 | 
						|
    # Check for parallel lines
 | 
						|
    if denominator_term < 0.005 and denominator_term > -0.005:
 | 
						|
        line_constant = -1.0
 | 
						|
    else:
 | 
						|
        line_constant = float(numerator_term) / denominator_term
 | 
						|
 | 
						|
    # Check for intersection
 | 
						|
    if line_constant < 1.0 and line_constant > 0.0:
 | 
						|
        # Now must check that other line hits
 | 
						|
        if (y4 - y3) < 0.005 and (y4 - y3) > -0.005:
 | 
						|
            k_line = (x1 - x3 + line_constant * (x2 - x1)) / (x4 - x3)
 | 
						|
        else:
 | 
						|
            k_line = (y1 - y3 + line_constant * (y2 - y1)) / (y4 - y3)
 | 
						|
        if k_line >= 0 and k_line < 1:
 | 
						|
            length_ratio = line_constant
 | 
						|
        else:
 | 
						|
            k_line = 1
 | 
						|
 | 
						|
    return length_ratio, k_line
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def FindEndForPolyline(xvec, yvec, x1, y1, x2, y2):
 | 
						|
    lastx = xvec[0]
 | 
						|
    lasty = yvec[0]
 | 
						|
 | 
						|
    min_ratio = 1.0
 | 
						|
 | 
						|
    for i in range(1, len(xvec)):
 | 
						|
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
 | 
						|
        lastx = xvec[i]
 | 
						|
        lasty = yvec[i]
 | 
						|
 | 
						|
        if line_ratio < min_ratio:
 | 
						|
            min_ratio = line_ratio
 | 
						|
 | 
						|
    # Do last (implicit) line if last and first doubles are not identical
 | 
						|
    if not (xvec[0] == lastx and yvec[0] == lasty):
 | 
						|
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
 | 
						|
        if line_ratio < min_ratio:
 | 
						|
            min_ratio = line_ratio
 | 
						|
 | 
						|
    return x1 + (x2 - x1) * min_ratio, y1 + (y2 - y1) * min_ratio
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def PolylineHitTest(xvec, yvec, x1, y1, x2, y2):
 | 
						|
    isAHit = False
 | 
						|
    lastx = xvec[0]
 | 
						|
    lasty = yvec[0]
 | 
						|
 | 
						|
    min_ratio = 1.0
 | 
						|
 | 
						|
    for i in range(1, len(xvec)):
 | 
						|
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[i], yvec[i])
 | 
						|
        if line_ratio != 1.0:
 | 
						|
            isAHit = True
 | 
						|
        lastx = xvec[i]
 | 
						|
        lasty = yvec[i]
 | 
						|
 | 
						|
        if line_ratio < min_ratio:
 | 
						|
            min_ratio = line_ratio
 | 
						|
 | 
						|
    # Do last (implicit) line if last and first doubles are not identical
 | 
						|
    if not (xvec[0] == lastx and yvec[0] == lasty):
 | 
						|
        line_ratio, other_ratio = CheckLineIntersection(x1, y1, x2, y2, lastx, lasty, xvec[0], yvec[0])
 | 
						|
        if line_ratio != 1.0:
 | 
						|
            isAHit = True
 | 
						|
 | 
						|
    return isAHit
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def GraphicsStraightenLine(point1, point2):
 | 
						|
    dx = point2[0] - point1[0]
 | 
						|
    dy = point2[1] - point1[1]
 | 
						|
 | 
						|
    if dx == 0:
 | 
						|
        return
 | 
						|
    elif abs(float(dy) / dx) > 1:
 | 
						|
        point2[0] = point1[0]
 | 
						|
    else:
 | 
						|
        point2[1] = point1[1]
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def GetPointOnLine(x1, y1, x2, y2, length):
 | 
						|
    l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
 | 
						|
    if l < 0.01:
 | 
						|
        l = 0.01
 | 
						|
 | 
						|
    i_bar = (x2 - x1) / l
 | 
						|
    j_bar = (y2 - y1) / l
 | 
						|
 | 
						|
    return -length * i_bar + x2, -length * j_bar + y2
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def GetArrowPoints(x1, y1, x2, y2, length, width):
 | 
						|
    l = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
 | 
						|
 | 
						|
    if l < 0.01:
 | 
						|
        l = 0.01
 | 
						|
 | 
						|
    i_bar = (x2 - x1) / l
 | 
						|
    j_bar = (y2 - y1) / l
 | 
						|
    
 | 
						|
    x3 = -length * i_bar + x2
 | 
						|
    y3 = -length * j_bar + y2
 | 
						|
 | 
						|
    return x2, y2, width * -j_bar + x3, width * i_bar + y3, -width * -j_bar + x3, -width * i_bar + y3
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def DrawArcToEllipse(x1, y1, width1, height1, x2, y2, x3, y3):
 | 
						|
    a1 = width1 / 2.0
 | 
						|
    b1 = height1 / 2.0
 | 
						|
 | 
						|
    # Check that x2 != x3
 | 
						|
    if abs(x2 - x3) < 0.05:
 | 
						|
        x4 = x2
 | 
						|
        if y3 > y2:
 | 
						|
            y4 = y1 - math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
 | 
						|
        else:
 | 
						|
            y4 = y1 + math.sqrt((b1 * b1 - (((x2 - x1) * (x2 - x1)) * (b1 * b1) / (a1 * a1))))
 | 
						|
        return x4, y4
 | 
						|
 | 
						|
    # Calculate the x and y coordinates of the point where arc intersects ellipse
 | 
						|
    A = (1 / (a1 * a1))
 | 
						|
    B = ((y3 - y2) * (y3 - y2)) / ((x3 - x2) * (x3 - x2) * b1 * b1)
 | 
						|
    C = (2 * (y3 - y2) * (y2 - y1)) / ((x3 - x2) * b1 * b1)
 | 
						|
    D = ((y2 - y1) * (y2 - y1)) / (b1 * b1)
 | 
						|
    E = (A + B)
 | 
						|
    F = (C - (2 * A * x1) - (2 * B * x2))
 | 
						|
    G = ((A * x1 * x1) + (B * x2 * x2) - (C * x2) + D - 1)
 | 
						|
    H = (float(y3 - y2) / (x3 - x2))
 | 
						|
    K = ((F * F) - (4 * E * G))
 | 
						|
 | 
						|
    if K >= 0:
 | 
						|
        # In this case the line intersects the ellipse, so calculate intersection
 | 
						|
        if x2 >= x1:
 | 
						|
            ellipse1_x = ((F * -1) + math.sqrt(K)) / (2 * E)
 | 
						|
            ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
 | 
						|
        else:
 | 
						|
            ellipse1_x = (((F * -1) - math.sqrt(K)) / (2 * E))
 | 
						|
            ellipse1_y = ((H * (ellipse1_x - x2)) + y2)
 | 
						|
    else:
 | 
						|
        # in this case, arc does not intersect ellipse, so just draw arc
 | 
						|
        ellipse1_x = x3
 | 
						|
        ellipse1_y = y3
 | 
						|
 | 
						|
    return ellipse1_x, ellipse1_y
 | 
						|
 | 
						|
 | 
						|
 | 
						|
def FindEndForCircle(radius, x1, y1, x2, y2):
 | 
						|
    H = math.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
 | 
						|
 | 
						|
    if H == 0:
 | 
						|
        return x1, y1
 | 
						|
    else:
 | 
						|
        return radius * (x2 - x1) / H + x1, radius * (y2 - y1) / H + y1
 |