Added rotation to wxImage

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@5872 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
This commit is contained in:
Julian Smart
2000-02-06 14:51:36 +00:00
parent 12c1b46a2f
commit 7a632f1056
13 changed files with 454 additions and 0 deletions

View File

@@ -30,6 +30,7 @@
// For memcpy
#include <string.h>
#include <math.h>
#ifdef __SALFORDC__
#undef FAR
@@ -2682,4 +2683,198 @@ unsigned long wxImage::ComputeHistogram( wxHashTable &h )
return nentries;
}
/*
* Rotation code by Carlos Moreno
*/
struct wxRotationPixel
{
unsigned char rgb[3];
};
struct wxRotationPoint
{
wxRotationPoint (double _x, double _y) : x(_x), y(_y) {}
wxRotationPoint (const wxPoint & p) : x(p.x), y(p.y) {}
double x, y;
};
static const wxRotationPixel gs_BlankPixel = {0,0,0};
static const double gs_Epsilon = 1e-10;
static inline int wxCint (double x)
{
return (x > 0) ? (int) (x + 0.5) : (int) (x - 0.5);
}
// Auxiliary function to rotate a point (x,y) with respect to point p0
// make it inline and use a straight return to facilitate optimization
// also, the function receives the sine and cosine of the angle to avoid
// repeating the time-consuming calls to these functions -- sin/cos can
// be computed and stored in the calling function.
inline wxRotationPoint rotated_point (const wxRotationPoint & p, double cos_angle, double sin_angle, const wxRotationPoint & p0)
{
return wxRotationPoint (p0.x + (p.x - p0.x) * cos_angle - (p.y - p0.y) * sin_angle,
p0.y + (p.y - p0.y) * cos_angle + (p.x - p0.x) * sin_angle);
}
inline wxRotationPoint rotated_point (double x, double y, double cos_angle, double sin_angle, const wxRotationPoint & p0)
{
return rotated_point (wxRotationPoint(x,y), cos_angle, sin_angle, p0);
}
wxImage wxImage::Rotate(double angle, const wxPoint & centre_of_rotation, bool interpolating, wxPoint * offset_after_rotation) const
{
const wxImage& img = * this;
int i;
angle = -angle; // screen coordinates are a mirror image of "real" coordinates
// Create pointer-based array to accelerate access to wxImage's data
wxRotationPixel ** data = new wxRotationPixel * [img.GetHeight()];
data[0] = (wxRotationPixel *) img.GetData();
for (i = 1; i < img.GetHeight(); i++)
{
data[i] = data[i - 1] + img.GetWidth();
}
// pre-compute coefficients for rotation formula (sine and cosine of the angle)
const double cos_angle = cos(angle);
const double sin_angle = sin(angle);
// Create new Image to store the result
// First, find rectangle that covers the rotated image; to do that,
// rotate the four corners
const wxRotationPoint & p0 = centre_of_rotation;
wxRotationPoint p1 = rotated_point (0, 0, cos_angle, sin_angle, p0);
wxRotationPoint p2 = rotated_point (0, img.GetHeight(), cos_angle, sin_angle, p0);
wxRotationPoint p3 = rotated_point (img.GetWidth(), 0, cos_angle, sin_angle, p0);
wxRotationPoint p4 = rotated_point (img.GetWidth(), img.GetHeight(), cos_angle, sin_angle, p0);
int x1 = floor (min (min(p1.x, p2.x), min(p3.x, p4.x)));
int y1 = floor (min (min(p1.y, p2.y), min(p3.y, p4.y)));
int x2 = ceil (max (max(p1.x, p2.x), max(p3.x, p4.x)));
int y2 = ceil (max (max(p1.y, p2.y), max(p3.y, p4.y)));
wxImage rotated (x2 - x1 + 1, y2 - y1 + 1);
if (offset_after_rotation != NULL)
{
*offset_after_rotation = wxPoint (x1, y1);
}
wxRotationPixel ** result_data = new wxRotationPixel * [rotated.GetHeight()];
result_data[0] = (wxRotationPixel *) rotated.GetData();
for (i = 1; i < rotated.GetHeight(); i++)
{
result_data[i] = result_data[i - 1] + rotated.GetWidth();
}
// Now, for each point of the rotated image, find where it came from, by
// performing an inverse rotation (a rotation of -angle) and getting the
// pixel at those coordinates
int x;
for (x = 0; x < rotated.GetWidth(); x++)
{
for (int y = 0; y < rotated.GetHeight(); y++)
{
wxRotationPoint src = rotated_point (x + x1, y + y1, cos_angle, -sin_angle, p0);
if (interpolating)
{
if (0 < src.x && src.x < img.GetWidth() - 1 &&
0 < src.y && src.y < img.GetHeight() - 1)
{
// interpolate using the 4 enclosing grid-points. Those
// points can be obtained using floor and ceiling of the
// exact coordinates of the point
const int x1 = wxCint(floor(src.x));
const int y1 = wxCint(floor(src.y));
const int x2 = wxCint(ceil(src.x));
const int y2 = wxCint(ceil(src.y));
// get four points and the distances (square of the distance,
// for efficiency reasons) for the interpolation formula
const wxRotationPixel & v1 = data[y1][x1];
const wxRotationPixel & v2 = data[y1][x2];
const wxRotationPixel & v3 = data[y2][x2];
const wxRotationPixel & v4 = data[y2][x1];
const double d1 = (src.x - x1) * (src.x - x1) + (src.y - y1) * (src.y - y1);
const double d2 = (src.x - x2) * (src.x - x2) + (src.y - y1) * (src.y - y1);
const double d3 = (src.x - x2) * (src.x - x2) + (src.y - y2) * (src.y - y2);
const double d4 = (src.x - x1) * (src.x - x1) + (src.y - y2) * (src.y - y2);
// Now interpolate as a weighted average of the four surrounding
// points, where the weights are the distances to each of those points
// If the point is exactly at one point of the grid of the source
// image, then don't interpolate -- just assign the pixel
if (d1 < gs_Epsilon) // d1,d2,d3,d4 are positive -- no need for abs()
{
result_data[y][x] = v1;
}
else if (d2 < gs_Epsilon)
{
result_data[y][x] = v2;
}
else if (d3 < gs_Epsilon)
{
result_data[y][x] = v3;
}
else if (d4 < gs_Epsilon)
{
result_data[y][x] = v4;
}
else
{
// weights for the weighted average are proportional to the inverse of the distance
const w1 = 1/d1, w2 = 1/d2, w3 = 1/d3, w4 = 1/d4;
for (int i = 0; i < 3; i++) // repeat calculation for R, G, and B
{
result_data[y][x].rgb[i] =
static_cast<unsigned char> ( (w1 * v1.rgb[i] + w2 * v2.rgb[i] +
w3 * v3.rgb[i] + w4 * v4.rgb[i]) /
(w1 + w2 + w3 + w4) );
}
}
}
else
{
result_data[y][x] = gs_BlankPixel;
}
}
else
{
const int & xs = wxCint (src.x); // wxCint performs rounding to the
const int & ys = wxCint (src.y); // closest integer
if (0 <= xs && xs < img.GetWidth() &&
0 <= ys && ys < img.GetHeight())
{
result_data[y][x] = data[ys][xs];
}
else
{
result_data[y][x] = gs_BlankPixel;
}
}
}
}
return rotated;
}