moved primitive string and string iterators operations to stringops.h/cpp files to make wxString code easier to read

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/trunk@45533 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
This commit is contained in:
Václav Slavík
2007-04-19 10:05:55 +00:00
parent e7308074d8
commit 467175ab3f
16 changed files with 654 additions and 533 deletions

View File

@@ -10,13 +10,6 @@
// Licence: wxWindows licence
/////////////////////////////////////////////////////////////////////////////
/*
* About ref counting:
* 1) all empty strings use g_strEmpty, nRefs = -1 (set in Init())
* 2) AllocBuffer() sets nRefs to 1, Lock() increments it by one
* 3) Unlock() decrements nRefs and frees memory if it goes to 0
*/
// ===========================================================================
// headers, declarations, constants
// ===========================================================================
@@ -111,394 +104,6 @@ wxSTD ostream& operator<<(wxSTD ostream& os, const wxWCharBuffer& str)
#if wxUSE_UNICODE_UTF8
// ---------------------------------------------------------------------------
// UTF-8 operations
// ---------------------------------------------------------------------------
//
// Table 3.1B from Unicode spec: Legal UTF-8 Byte Sequences
//
// Code Points | 1st Byte | 2nd Byte | 3rd Byte | 4th Byte |
// -------------------+----------+----------+----------+----------+
// U+0000..U+007F | 00..7F | | | |
// U+0080..U+07FF | C2..DF | 80..BF | | |
// U+0800..U+0FFF | E0 | A0..BF | 80..BF | |
// U+1000..U+FFFF | E1..EF | 80..BF | 80..BF | |
// U+10000..U+3FFFF | F0 | 90..BF | 80..BF | 80..BF |
// U+40000..U+FFFFF | F1..F3 | 80..BF | 80..BF | 80..BF |
// U+100000..U+10FFFF | F4 | 80..8F | 80..BF | 80..BF |
// -------------------+----------+----------+----------+----------+
bool wxString::IsValidUtf8String(const char *str)
{
if ( !str )
return true; // empty string is UTF8 string
const unsigned char *c = (const unsigned char*)str;
for ( ; *c; ++c )
{
unsigned char b = *c;
if ( b <= 0x7F ) // 00..7F
continue;
else if ( b < 0xC2 ) // invalid lead bytes: 80..C1
return false;
// two-byte sequences:
else if ( b <= 0xDF ) // C2..DF
{
b = *(++c);
if ( !(b >= 0x80 && b <= 0xBF ) )
return false;
}
// three-byte sequences:
else if ( b == 0xE0 )
{
b = *(++c);
if ( !(b >= 0xA0 && b <= 0xBF ) )
return false;
b = *(++c);
if ( !(b >= 0x80 && b <= 0xBF ) )
return false;
}
else if ( b <= 0xEF ) // E1..EF
{
for ( int i = 0; i < 2; ++i )
{
b = *(++c);
if ( !(b >= 0x80 && b <= 0xBF ) )
return false;
}
}
// four-byte sequences:
else if ( b == 0xF0 )
{
b = *(++c);
if ( !(b >= 0x90 && b <= 0xBF ) )
return false;
for ( int i = 0; i < 2; ++i )
{
b = *(++c);
if ( !(b >= 0x80 && b <= 0xBF ) )
return false;
}
}
else if ( b <= 0xF3 ) // F1..F3
{
for ( int i = 0; i < 3; ++i )
{
b = *(++c);
if ( !(b >= 0x80 && b <= 0xBF ) )
return false;
}
}
else if ( b == 0xF4 )
{
b = *(++c);
if ( !(b >= 0x80 && b <= 0x8F ) )
return false;
for ( int i = 0; i < 2; ++i )
{
b = *(++c);
if ( !(b >= 0x80 && b <= 0xBF ) )
return false;
}
}
else // otherwise, it's invalid lead byte
return false;
}
return true;
}
#ifdef __WXDEBUG__
/* static */
bool wxString::IsValidUtf8LeadByte(unsigned char c)
{
return (c <= 0x7F) || (c >= 0xC2 && c <= 0xF4);
}
#endif
unsigned char wxString::ms_utf8IterTable[256] = {
// single-byte sequences (ASCII):
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 00..0F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 10..1F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 20..2F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 30..3F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 40..4F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 50..5F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 60..6F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 70..7F
// these are invalid, we use step 1 to skip
// over them (should never happen):
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 80..8F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 90..9F
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A0..AF
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B0..BF
1, 1, // C0,C1
// two-byte sequences:
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C2..CF
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D0..DF
// three-byte sequences:
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E0..EF
// four-byte sequences:
4, 4, 4, 4, 4, // F0..F4
// these are invalid again (5- or 6-byte
// sequences and sequences for code points
// above U+10FFFF, as restricted by RFC 3629):
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F5..FF
};
/* static */
void wxString::DecIter(wxStringImpl::const_iterator& i)
{
wxASSERT( IsValidUtf8LeadByte(*i) );
// Non-lead bytes are all in the 0x80..0xBF range (i.e. 10xxxxxx in
// binary), so we just have to go back until we hit a byte that is either
// < 0x80 (i.e. 0xxxxxxx in binary) or 0xC0..0xFF (11xxxxxx in binary; this
// includes some invalid values, but we can ignore it here, because we
// assume valid UTF-8 input for the purpose of efficient implementation).
--i;
while ( ((*i) & 0xC0) == 0x80 /* 2 highest bits are '10' */ )
--i;
}
/* static */
void wxString::DecIter(wxStringImpl::iterator& i)
{
// FIXME-UTF8: use template instead
wxASSERT( IsValidUtf8LeadByte(*i) );
--i;
while ( ((*i) & 0xC0) == 0x80 /* 2 highest bits are '10' */ )
--i;
}
/* static */
wxStringImpl::const_iterator
wxString::AddToIter(wxStringImpl::const_iterator i, int n)
{
wxStringImpl::const_iterator out(i);
if ( n > 0 )
{
for ( int j = 0; j < n; ++j )
IncIter(out);
}
else if ( n < 0 )
{
for ( int j = 0; j > n; --j )
DecIter(out);
}
return out;
}
wxStringImpl::iterator
wxString::AddToIter(wxStringImpl::iterator i, int n)
{
// FIXME-UTF8: use template instead
wxStringImpl::iterator out(i);
if ( n > 0 )
{
for ( int j = 0; j < n; ++j )
IncIter(out);
}
else if ( n < 0 )
{
for ( int j = 0; j > n; --j )
DecIter(out);
}
return out;
}
/* static */
int wxString::DiffIters(wxStringImpl::const_iterator i1,
wxStringImpl::const_iterator i2)
{
int dist = 0;
if ( i1 < i2 )
{
while ( i1 != i2 )
{
IncIter(i1);
dist--;
}
}
else if ( i2 < i1 )
{
while ( i2 != i1 )
{
IncIter(i2);
dist++;
}
}
return dist;
}
int wxString::DiffIters(wxStringImpl::iterator i1, wxStringImpl::iterator i2)
{
// FIXME-UTF8: use template instead
int dist = 0;
if ( i1 < i2 )
{
while ( i1 != i2 )
{
IncIter(i1);
dist--;
}
}
else if ( i2 < i1 )
{
while ( i2 != i1 )
{
IncIter(i2);
dist++;
}
}
return dist;
}
/* static */
wxString::Utf8CharBuffer wxString::EncodeChar(wxUniChar ch)
{
Utf8CharBuffer buf;
char *out = buf.data;
wxUniChar::value_type code = ch.GetValue();
// Char. number range | UTF-8 octet sequence
// (hexadecimal) | (binary)
// ----------------------+---------------------------------------------
// 0000 0000 - 0000 007F | 0xxxxxxx
// 0000 0080 - 0000 07FF | 110xxxxx 10xxxxxx
// 0000 0800 - 0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx
// 0001 0000 - 0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
//
// Code point value is stored in bits marked with 'x', lowest-order bit
// of the value on the right side in the diagram above.
// (from RFC 3629)
if ( code <= 0x7F )
{
out[1] = 0;
out[0] = (char)code;
}
else if ( code <= 0x07FF )
{
out[2] = 0;
// NB: this line takes 6 least significant bits, encodes them as
// 10xxxxxx and discards them so that the next byte can be encoded:
out[1] = 0x80 | (code & 0x3F); code >>= 6;
out[0] = 0xC0 | code;
}
else if ( code < 0xFFFF )
{
out[3] = 0;
out[2] = 0x80 | (code & 0x3F); code >>= 6;
out[1] = 0x80 | (code & 0x3F); code >>= 6;
out[0] = 0xE0 | code;
}
else if ( code <= 0x10FFFF )
{
out[4] = 0;
out[3] = 0x80 | (code & 0x3F); code >>= 6;
out[2] = 0x80 | (code & 0x3F); code >>= 6;
out[1] = 0x80 | (code & 0x3F); code >>= 6;
out[0] = 0xF0 | code;
}
else
{
wxFAIL_MSG( _T("trying to encode undefined Unicode character") );
out[0] = 0;
}
return buf;
}
/* static */
wxUniChar wxUniCharRef::DecodeChar(wxStringImpl::const_iterator i)
{
wxASSERT( wxString::IsValidUtf8LeadByte(*i) ); // FIXME-UTF8: no "wxString::"
wxUniChar::value_type code = 0;
size_t len = wxString::GetUtf8CharLength(*i);
wxASSERT_MSG( len <= 4, _T("invalid UTF-8 sequence length") );
// Char. number range | UTF-8 octet sequence
// (hexadecimal) | (binary)
// ----------------------+---------------------------------------------
// 0000 0000 - 0000 007F | 0xxxxxxx
// 0000 0080 - 0000 07FF | 110xxxxx 10xxxxxx
// 0000 0800 - 0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx
// 0001 0000 - 0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
//
// Code point value is stored in bits marked with 'x', lowest-order bit
// of the value on the right side in the diagram above.
// (from RFC 3629)
// mask to extract lead byte's value ('x' bits above), by sequence's length:
static const unsigned char s_leadValueMask[4] = { 0x7F, 0x1F, 0x0F, 0x07 };
#ifdef __WXDEBUG__
// mask and value of lead byte's most significant bits, by length:
static const unsigned char s_leadMarkerMask[4] = { 0x80, 0xE0, 0xF0, 0xF8 };
static const unsigned char s_leadMarkerVal[4] = { 0x00, 0xC0, 0xE0, 0xF0 };
#endif
// extract the lead byte's value bits:
wxASSERT_MSG( ((unsigned char)*i & s_leadMarkerMask[len-1]) ==
s_leadMarkerVal[len-1],
_T("invalid UTF-8 lead byte") );
code = (unsigned char)*i & s_leadValueMask[len-1];
// all remaining bytes, if any, are handled in the same way regardless of
// sequence's length:
for ( ++i ; len > 1; --len, ++i )
{
wxASSERT_MSG( ((unsigned char)*i & 0xC0) == 0x80,
_T("invalid UTF-8 byte") );
code <<= 6;
code |= (unsigned char)*i & 0x3F;
}
return wxUniChar(code);
}
/* static */
wxCharBuffer wxString::EncodeNChars(size_t n, wxUniChar ch)
{
Utf8CharBuffer once(EncodeChar(ch));
// the IncIter() table can be used to determine the length of ch's encoding:
size_t len = ms_utf8IterTable[(unsigned char)once.data[0]];
wxCharBuffer buf(n * len);
char *ptr = buf.data();
for ( size_t i = 0; i < n; i++, ptr += len )
{
memcpy(ptr, once.data, len);
}
return buf;
}
void wxString::PosLenToImpl(size_t pos, size_t len,
size_t *implPos, size_t *implLen) const
{