Added wxRoses sample from Ric Werme

git-svn-id: https://svn.wxwidgets.org/svn/wx/wxWidgets/branches/WX_2_8_BRANCH@46408 c3d73ce0-8a6f-49c7-b76d-6d57e0e08775
This commit is contained in:
Robin Dunn
2007-06-11 20:40:43 +00:00
parent a74f1a0dfa
commit 1779d8df50
2 changed files with 840 additions and 0 deletions

View File

@@ -0,0 +1,371 @@
#----------------------------------------------------------------------------
# Name: clroses.py
# Purpose: Class definitions for Roses interactive display programs.
#
# Author: Ric Werme
# WWW: http://WermeNH.com/roses
#
# Created: June 2007
# CVS-ID: $Id$
# Copyright: Public Domain, please give credit where credit is due.
# License: Sorry, no EULA.
#----------------------------------------------------------------------------
# This is yet another incarnation of an old graphics hack based around
# misdrawing an analytic geometry curve called a rose. The basic form is
# simply the polar coordinate function r = cos(a * theta). "a" is the
# "order" of the rose, a zero value degenerates to r = 1, a circle. While
# this program is happy to draw that, much more interesting things happen when
# one or more of the following is in effect:
# 1) The "delta theta" between points is large enough to distort the curve,
# e.g. 90 degrees will draw a square, slightly less will be interesting.
# 2) The order of the rose is too large to draw it accurately.
# 3) Vectors are drawn at less than full speed.
# 4) The program is stepping through different patterns on its own.
# While you will be able to predict some aspects of the generated patterns,
# a lot of what there is to be found is found at random!
# The rose class has all the knowledge to implement generating vector data for
# roses and handles all the timing issues. It does not have the user interface
# for changing all the drawing parameters. It offers a "vision" of what an
# ideal Roses program should be, however, callers are welcome to assert their
# independence, override defaults, ignore features, etc.
from math import sin, cos, pi
# Rose class knows about:
# > Generating points and vectors (returning data as a list of points)
# > Starting a new rose (e.g. telling user to erase old vectors)
# > Stepping from one pattern to the next.
class rose:
"Defines everything needed for drawing a rose with timers."
# The following data is accessible by callers, but there are set
# methods for most everything and various method calls to client methods
# to display current values.
style = 100 # Angular distance along curve between points
sincr = -1 # Amount to increment style by in auto mode
petals = 2 # Lobes on the rose (even values have 2X lobes)
pincr = 1 # Amount to increment petals by in auto mode
nvec = 399 # Number of vectors to draw the rose
minvec = 0 # Minimum number acceptable in automatic mode
maxvec = 3600 # Maximum number acceptable in automatic mode
skipvec = 0 # Don't draw this many at the start (cheap animations)
drawvec = 3600 # Draw only this many (cheap animations)
step = 20 # Number of vectors to draw each clock tick
draw_delay = 50 # Time between roselet calls to watch pattern draw
wait_delay = 2000 # Time between roses in automatic mode
# Other variables that the application shouldn't access.
verbose = 0 # No good way to set this at the moment.
nextpt = 0 # Next position to draw on next clock tick
# Internal states:
INT_IDLE, INT_DRAW, INT_SEARCH, INT_WAIT, INT_RESIZE = range(5)
int_state = INT_IDLE
# Command states
CMD_STOP, CMD_GO = range(2)
cmd_state = CMD_STOP
# Return full rose line (a tuple of (x, y) tuples). Not used by interactive
# clients but still useful for command line and batch clients.
# This is the "purest" code and doesn't require the App* methods defined
# by the caller.
def rose(self, style, petals, vectors):
self.nvec = vectors
self.make_tables(vectors)
line = [(1.0, 0.0)]
for i in range (1, vectors):
theta = (style * i) % vectors
r = self.cos_table[(petals * theta) % vectors]
line.append((r * self.cos_table[theta], r * self.sin_table[theta]))
line.append((1.0, 0.0))
return line
# Generate vectors for the next chunk of rose.
# This is not meant to be called from an external module, as it is closely
# coupled to parameters set up within the class and limits set up by
# restart(). Restart() initializes all data this needs to start drawing a
# pattern, and clock() calls this to compute the next batch of points and
# hear if that is the last batch. We maintain all data we need to draw each
# batch after the first. theta should be 2.0*pi * style*i/self.nvec
# radians, but we deal in terms of the lookup table so it's just the index
# that refers to the same spot.
def roselet(self):
line = []
stop = self.nextpt + self.step
keep_running = True
if stop > self.endpt:
stop = self.endpt
keep_running = False
for i in range (self.nextpt, stop + 1):
theta = (self.style * i) % self.nvec
r = self.cos_table[(self.petals * theta) % self.nvec]
line.append((r * self.cos_table[theta], r * self.sin_table[theta]))
self.nextpt = stop
return line, keep_running
# Generate sine and cosine lookup tables. We could create data for just
# 1/4 of a circle, at least if vectors was a multiple of 4, and share a
# table for both sine and cosine, but memory is cheaper than it was in
# PDP-11 days. OTOH, small, shared tables would be more cache friendly,
# but if we were that concerned, this would be in C.
def make_tables(self, vectors):
self.sin_table = [sin(2.0 * pi * i / vectors) for i in range(vectors)]
self.cos_table = [cos(2.0 * pi * i / vectors) for i in range(vectors)]
# Rescale (x,y) data to match our window.
def rescale(self, line, offset, scale):
for i in range(len(line)):
line[i] = (line[i][0] * scale + offset[0], line[i][1] * scale + offset[1])
return line
# Euler's Method for computing the greatest common divisor. Knuth's
# "The Art of Computer Programming" vol.2 is the standard reference,
# but the web has several good ones too. Basically this sheds factors
# that aren't in the GCD and returns when there's nothing left to shed.
# N.B. Call with a >= b.
def gcd(self, a, b):
while b != 0:
a, b = b, a % b
return a
# Erase any old vectors and start drawing a new rose. When the program
# starts, the sine and cosine tables don't exist, build them here. (Of
# course, if an __init__() method is added, move the call there.
# If we're in automatic mode, check to see if the new pattern has neither
# too few or too many vectors and skip it if so. Skip by setting up for
# a one tick wait to let us get back to the main loop so the user can
# update parameters or stop.
def restart(self):
if self.verbose:
print 'restart: int_state', self.int_state, 'cmd_state', self.cmd_state
try:
tmp = self.sin_table[0]
except:
self.make_tables(self.nvec)
new_state = self.INT_DRAW
self.takesvec = self.nvec / self.gcd(self.nvec, self.style)
if not self.takesvec & 1 and self.petals & 1:
self.takesvec /= 2
if self.cmd_state == self.CMD_GO:
if self.minvec > self.takesvec or self.maxvec < self.takesvec:
new_state = self.INT_SEARCH
self.AppSetTakesVec(self.takesvec)
self.AppClear()
self.nextpt = self.skipvec
self.endpt = min(self.takesvec, self.skipvec + self.drawvec)
old_state, self.int_state = self.int_state, new_state
if old_state == self.INT_IDLE: # Clock not running
self.clock()
elif old_state == self.INT_WAIT: # May be long delay, restart
self.AppCancelTimer()
self.clock()
else:
return 1 # If called by clock(), return and start clock
return 0 # We're in INT_IDLE or INT_WAIT, clock running
# Called from App. Recompute the center and scale values for the subsequent pattern.
# Force us into INT_RESIZE state if not already there so that in 100 ms we'll start
# to draw something to give an idea of the new size.
def resize(self, size, delay):
xsize, ysize = size
self.center = (xsize / 2, ysize / 2)
self.scale = min(xsize, ysize) / 2.1
self.repaint(delay)
# Called from App or above. From App, called with small delay because
# some window managers will produce a flood of expose events or call us
# before initialization is done.
def repaint(self, delay):
if self.int_state != self.INT_RESIZE:
# print 'repaint after', delay
self.int_state = self.INT_RESIZE
self.AppCancelTimer()
self.AppAfter(delay, self.clock)
# Method that returns the next style and petal values for automatic
# mode and remembers them internally. Keep things scaled in the
# range [0:nvec) because there's little reason to exceed that.
def next(self):
self.style += self.sincr
self.petals += self.pincr
if self.style <= 0 or self.petals < 0:
self.style, self.petals = \
abs(self.petals) + 1, abs(self.style)
if self.style >= self.nvec:
self.style %= self.nvec # Don't bother defending against 0
if self.petals >= self.nvec:
self.petals %= self.nvec
self.AppSetParam(self.style, self.petals, self.nvec)
# Resume pattern drawing with the next one to display.
def resume(self):
self.next()
return self.restart()
# Stop/Redraw button.
def cmd_stop(self):
if self.cmd_state == self.CMD_STOP:
self.restart() # Redraw current pattern
elif self.cmd_state == self.CMD_GO:
self.cmd_state = self.CMD_STOP
self.update_labels()
# Skip/Forward button. CMD_STOP & CMD_GO both just call resume.
def cmd_step(self):
# print 'cmd_step, cmd_state', self.cmd_state
self.resume() # Draw next pattern
# Go/Redraw button
def cmd_go(self):
if self.cmd_state == self.CMD_STOP:
self.cmd_state = self.CMD_GO
self.update_labels()
self.resume() # Draw next pattern
elif self.cmd_state == self.CMD_GO:
self.restart() # Redraw current pattern
# Centralize button naming to share with initialization.
def update_labels(self):
if self.cmd_state == self.CMD_STOP:
self.AppCmdLabels(('Redraw', 'Forward', 'Go', 'Back'))
else: # Must be in state CMD_GO
self.AppCmdLabels(('Stop', 'Skip', 'Redraw', 'Reverse'))
# Reverse button. Useful for when you see an interesting pattern and want
# to go back to it. If running, just change direction. If stopped, back
# up one step. The resume code handles the step, then we change the
# incrementers back to what they were. (Unless resume changed them too.)
def cmd_reverse(self):
self.sincr = -self.sincr
self.pincr = -self.pincr
if self.cmd_state == self.CMD_STOP:
self.resume();
self.sincr = -self.sincr # Go forward again
self.pincr = -self.pincr
else:
self.AppSetIncrs(self.sincr, self.pincr)
# Handler called on each timer event. This handles the metered drawing
# of a rose and the delays between them. It also registers for the next
# timer event unless we're idle (rose is done and the delay between
# roses is 0.)
def clock(self):
if self.int_state == self.INT_IDLE:
# print 'clock called in idle state'
delay = 0
elif self.int_state == self.INT_DRAW:
line, run = self.roselet()
self.AppCreateLine(self.rescale(line, self.center, self.scale))
if run:
delay = self.draw_delay
else:
if self.cmd_state == self.CMD_GO:
self.int_state = self.INT_WAIT
delay = self.wait_delay
else:
self.int_state = self.INT_IDLE
delay = 0
elif self.int_state == self.INT_SEARCH:
delay = self.resume() # May call us to start drawing
if self.int_state == self.INT_SEARCH:
delay = self.draw_delay # but not if searching.
elif self.int_state == self.INT_WAIT:
if self.cmd_state == self.CMD_GO:
delay = self.resume() # Calls us to start drawing
else:
self.int_state = self.INT_IDLE
delay = 0
elif self.int_state == self.INT_RESIZE: # Waiting for resize event stream to settle
self.AppSetParam(self.style, self.petals, self.nvec)
self.AppSetIncrs(self.sincr, self.pincr)
delay = self.restart() # Calls us to start drawing
if delay == 0:
if self.verbose:
print 'clock: going idle from state', self.int_state
else:
self.AppAfter(delay, self.clock)
# Methods to allow App to change the parameters on the screen.
# These expect to be called when the associated paramenter changes,
# but work reasonably well if several are called at once. (E.g.
# tkroses.py groups them into things that affect the visual display
# and warrant a new start, and things that just change and don't affect
# the ultimate pattern. All parameters within a group are updated
# at once even if the value hasn't changed.
# We restrict the style and petals parameters to the range [0: nvec)
# since numbers outside of that range aren't interesting. We don't
# immediately update the value in the application, we probably should.
# NW control window - key parameters
def SetStyle(self, value):
self.style = value % self.nvec
self.restart()
def SetSincr(self, value):
self.sincr = value
def SetPetals(self, value):
self.petals = value % self.nvec
self.restart()
def SetPincr(self, value):
self.pincr = value
# SW control window - vectors
def SetVectors(self, value):
self.nvec = value
self.style %= value
self.petals %= value
self.AppSetParam(self.style, self.petals, self.nvec)
self.make_tables(value)
self.restart()
def SetMinVec(self, value):
if self.maxvec >= value and self.nvec >= value:
self.minvec = value
def SetMaxVec(self, value):
if self.minvec < value:
self.maxvec = value
def SetSkipFirst(self, value):
self.skipvec = value
self.restart()
def SetDrawOnly(self, value):
self.drawvec = value
self.restart()
# SE control window - timings
def SetStep(self, value):
self.step = value
def SetDrawDelay(self, value):
self.draw_delay = value
def SetWaitDelay(self, value):
self.wait_delay = value
# Method for client to use to have us supply our defaults.
def SupplyControlValues(self):
self.update_labels()
self.AppSetParam(self.style, self.petals, self.nvec)
self.AppSetIncrs(self.sincr, self.pincr)
self.AppSetVectors(self.nvec, self.minvec, self.maxvec,
self.skipvec, self.drawvec)
self.AppSetTiming(self.step, self.draw_delay, self.wait_delay)

View File

@@ -0,0 +1,469 @@
#----------------------------------------------------------------------------
# Name: wxroses.py
# Purpose: wxPython GUI using clroses.py to display a classic graphics
# hack.
#
# Author: Ric Werme, Robin Dunn.
# WWW: http://WermeNH.com/roses
#
# Created: June 2007
# CVS-ID: $Id$
# Copyright: Public Domain, please give credit where credit is due.
# License: Sorry, no EULA.
#----------------------------------------------------------------------------
# This module is responsible for everything involving GUI usage
# as clroses knows nothing about wxpython, tkintr, etc.
import wx
import clroses
import wx.lib.colourselect as cs
# Class SpinPanel creates a control that includes both a StaticText widget
# which holds the the name of a parameter and a SpinCtrl widget which
# displays the current value. Values are set at initialization and can
# change via the SpinCtrl widget or by the program. So that the program
# can easily access the SpinCtrl, the SpinPanel handles are saved in the
# spin_panels dictionary.
class SpinPanel(wx.Panel):
def __init__(self, parent, name, min_value, value, max_value, callback):
wx.Panel.__init__(self, parent, -1)
if "wxMac" in wx.PlatformInfo:
self.SetWindowVariant(wx.WINDOW_VARIANT_SMALL)
self.st = wx.StaticText(self, -1, name)
self.sc = wx.SpinCtrl(self, -1, "", size = (70, -1))
self.sc.SetRange(min_value, max_value)
self.sc.SetValue(value)
self.sc.Bind(wx.EVT_SPINCTRL, self.OnSpin)
self.callback = callback
sizer = wx.BoxSizer(wx.HORIZONTAL)
sizer.Add(self.st, 0, wx.ALIGN_CENTER_VERTICAL)
sizer.Add((1,1), 1)
sizer.Add(self.sc)
self.SetSizer(sizer)
global spin_panels
spin_panels[name] = self
# Called (generally through spin_panels{}) to set the SpinCtrl value.
def SetValue(self, value):
self.sc.SetValue(value)
# Called when user changes the SpinCtrl value.
def OnSpin(self, event):
name = self.st.GetLabel()
value = self.sc.GetValue()
if verbose:
print 'OnSpin', name, '=', value
self.callback(name, value) # Call MyFrame.OnSpinback to call clroses
# This class is used to display the current rose diagram. It keeps a
# buffer bitmap of the current display, which it uses to refresh the
# screen with when needed. When it is told to draw some lines it does
# so to the buffer in order for it to always be up to date.
class RosePanel(wx.Panel):
def __init__(self, *args, **kw):
wx.Panel.__init__(self, *args, **kw)
self.InitBuffer()
self.resizeNeeded = False
self.useGCDC = False
self.useBuffer = True
# set default colors
self.SetBackgroundColour((51,51,51)) # gray20
self.SetForegroundColour((164, 211, 238)) # lightskyblue2
# connect the size and paint events to handlers
self.Bind(wx.EVT_SIZE, self.OnSize)
self.Bind(wx.EVT_PAINT, self.OnPaint)
self.Bind(wx.EVT_IDLE, self.OnIdle)
def InitBuffer(self):
size = self.GetClientSize()
self.buffer = wx.EmptyBitmap(max(1, size.width),
max(1, size.height))
def Clear(self):
dc = self.useBuffer and wx.MemoryDC(self.buffer) or wx.ClientDC(self)
dc.SetBackground(wx.Brush(self.GetBackgroundColour()))
dc.Clear()
if self.useBuffer:
self.Refresh(False)
def DrawLines(self, lines):
if len(lines) <= 1:
return
dc = self.useBuffer and wx.MemoryDC(self.buffer) or wx.ClientDC(self)
if self.useGCDC:
dc = wx.GCDC(dc)
dc.SetPen(wx.Pen(self.GetForegroundColour(), 1))
dc.DrawLines(lines)
if self.useBuffer:
self.Refresh(False)
def TriggerResize(self):
self.GetParent().TriggerResize(self.buffer.GetSize())
def TriggerRedraw(self):
self.GetParent().TriggerRedraw()
def OnSize(self, evt):
self.resizeNeeded = True
def OnIdle(self, evt):
if self.resizeNeeded:
self.InitBuffer()
self.TriggerResize()
if self.useBuffer:
self.Refresh()
self.resizeNeeded = False
def OnPaint(self, evt):
dc = wx.PaintDC(self)
if self.useBuffer:
dc.DrawBitmap(self.buffer, 0,0)
else:
self.TriggerRedraw()
# A panel used to collect options on how the rose is drawn
class OptionsPanel(wx.Panel):
def __init__(self, parent, rose):
wx.Panel.__init__(self, parent)
self.rose = rose
sizer = wx.StaticBoxSizer(wx.StaticBox(self, label='Options'),
wx.VERTICAL)
self.useGCDC = wx.CheckBox(self, label="Use GCDC")
sizer.Add(self.useGCDC, 0, wx.BOTTOM|wx.LEFT, 2)
self.useBuffer = wx.CheckBox(self, label="Use buffering")
sizer.Add(self.useBuffer, 0, wx.BOTTOM|wx.LEFT, 2)
def makeCButton(label):
btn = cs.ColourSelect(self, size=(20,22))
lbl = wx.StaticText(self, -1, label)
sizer = wx.BoxSizer(wx.HORIZONTAL)
sizer.Add(btn)
sizer.Add((4,4))
sizer.Add(lbl, 0, wx.ALIGN_CENTER_VERTICAL)
return sizer, btn
s, self.fg = makeCButton('foreground')
sizer.Add(s)
s, self.bg = makeCButton('background')
sizer.Add(s)
self.SetSizer(sizer)
self.Bind(wx.EVT_CHECKBOX, self.OnUseGCDC, self.useGCDC)
self.Bind(wx.EVT_CHECKBOX, self.OnUseBuffer, self.useBuffer)
self.Bind(wx.EVT_IDLE, self.OnIdle)
self.Bind(cs.EVT_COLOURSELECT, self.OnSetFG, self.fg)
self.Bind(cs.EVT_COLOURSELECT, self.OnSetBG, self.bg)
def OnIdle(self, evt):
if self.useGCDC.GetValue() != self.rose.useGCDC:
self.useGCDC.SetValue(self.rose.useGCDC)
if self.useBuffer.GetValue() != self.rose.useBuffer:
self.useBuffer.SetValue(self.rose.useBuffer)
if self.fg.GetValue() != self.rose.GetForegroundColour():
self.fg.SetValue(self.rose.GetForegroundColour())
if self.bg.GetValue() != self.rose.GetBackgroundColour():
self.bg.SetValue(self.rose.GetBackgroundColour())
def OnUseGCDC(self, evt):
self.rose.useGCDC = evt.IsChecked()
self.rose.TriggerRedraw()
def OnUseBuffer(self, evt):
self.rose.useBuffer = evt.IsChecked()
self.rose.TriggerRedraw()
def OnSetFG(self, evt):
self.rose.SetForegroundColour(evt.GetValue())
self.rose.TriggerRedraw()
def OnSetBG(self, evt):
self.rose.SetBackgroundColour(evt.GetValue())
self.rose.TriggerRedraw()
# MyFrame is the traditional class name to create and populate the
# application's frame. The general GUI has control/status panels on
# the right side and a panel on the left side that draws the rose
#
# This class also derives from clroses.rose so it can implement the
# required interfaces to connect the GUI to the rose engine.
class MyFrame(wx.Frame, clroses.rose):
def __init__(self):
def makeSP(name, labels, statictexts = None):
panel = wx.Panel(self.side_panel, -1)
box = wx.StaticBox(panel, -1, name)
sizer = wx.StaticBoxSizer(box, wx.VERTICAL)
for name, min_value, value, max_value in labels:
sp = SpinPanel(panel, name, min_value, value, max_value, self.OnSpinback)
sizer.Add(sp, 0, wx.EXPAND)
if statictexts:
for name, text in statictexts:
st = wx.StaticText(panel, -1, text)
spin_panels[name] = st # Supposed to be a SpinPanel....
sizer.Add(st, 0, wx.EXPAND)
panel.SetSizer(sizer)
return panel
wx.Frame.__init__(self, None, title="Roses in wxPython")
self.rose_panel = RosePanel(self)
self.side_panel = wx.Panel(self)
# The cmd panel is four buttons whose names and foreground colors
# change. Plop them in a StaticBox like the SpinPanels.
self.cmd_panel = wx.Panel(self.side_panel, -1)
box = wx.StaticBox(self.cmd_panel, -1, 'Command')
sizer = wx.StaticBoxSizer(box, wx.VERTICAL)
global ctrl_buttons
border = 'wxMac' in wx.PlatformInfo and 3 or 0
for name, color, handler in (
('Redraw', 'red', self.OnRedraw),
('Forward', 'magenta', self.OnForward),
('Go', 'dark green', self.OnGo),
('Back', 'blue', self.OnBack)):
button = wx.Button(self.cmd_panel, -1, name)
button.SetForegroundColour(color)
ctrl_buttons[name] = button
button.Bind(wx.EVT_BUTTON, handler)
sizer.Add(button, 0, wx.EXPAND|wx.TOP|wx.BOTTOM, border)
self.cmd_panel.SetSizer(sizer)
# Now make the rest of the control panels...
# The order of creation of SpinCtrls and Buttons is the order that
# the tab key will step through, so the order of panel creation is
# important.
# In the SpinPanel data (name, min, value, max), value will be
# overridden by clroses.py defaults.
self.coe_panel = makeSP('Coefficients',
(('Style', 0, 100, 3600),
('Sincr', -3600, -1, 3600),
('Petal', 0, 2, 3600),
('Pincr', -3600, 1, 3600)))
self.vec_panel = makeSP('Vector',
(('Vectors' , 1, 399, 3600),
('Minimum' , 1, 1, 3600),
('Maximum' , 1, 3600, 3600),
('Skip first', 0, 0, 3600),
('Draw only' , 1, 3600, 3600)),
(('Takes', 'Takes 0000 vectors'), ))
self.tim_panel = makeSP('Timing',
(('Vec/tick' , 1, 20, 3600),
('msec/tick', 1, 50, 1000),
('Delay' , 1, 2000, 9999)))
self.opt_panel = OptionsPanel(self.side_panel, self.rose_panel)
# put them all on in a sizer attached to the side_panel
panelSizer = wx.BoxSizer(wx.VERTICAL)
panelSizer.Add(self.cmd_panel, 0, wx.EXPAND|wx.TOP|wx.LEFT|wx.RIGHT, 5)
panelSizer.Add(self.coe_panel, 0, wx.EXPAND|wx.TOP|wx.LEFT|wx.RIGHT, 5)
panelSizer.Add(self.vec_panel, 0, wx.EXPAND|wx.TOP|wx.LEFT|wx.RIGHT, 5)
panelSizer.Add(self.tim_panel, 0, wx.EXPAND|wx.TOP|wx.LEFT|wx.RIGHT, 5)
panelSizer.Add(self.opt_panel, 0, wx.EXPAND|wx.TOP|wx.LEFT|wx.RIGHT, 5)
self.side_panel.SetSizer(panelSizer)
# and now arrange the two main panels in another sizer for the frame
mainSizer = wx.BoxSizer(wx.HORIZONTAL)
mainSizer.Add(self.rose_panel, 1, wx.EXPAND)
mainSizer.Add(self.side_panel, 0, wx.EXPAND)
self.SetSizer(mainSizer)
# bind event handlers
self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.OnTimer, self.timer)
# Determine appropriate image size.
# At this point, the rose_panel and side_panel will both report
# size (20, 20). After mainSizer.Fit(self) they will report the
# same, but the Frame size, self.GetSize(), will report the desired
# side panel dimensions plus an extra 20 on the width. That lets
# us determine the frame size that will display the side panel and
# a square space for the diagram. Only after Show() will the two
# panels report the accurate sizes.
mainSizer.Fit(self)
rw, rh = self.rose_panel.GetSize()
sw, sh = self.side_panel.GetSize()
fw, fh = self.GetSize()
h = max(600, fh) # Change 600 to desired minimum size
w = h + fw - rw
if verbose:
print 'rose panel size', (rw, rh)
print 'side panel size', (sw, sh)
print ' frame size', (fw, fh)
print 'Want size', (w,h)
self.SetSize((w, h))
self.SupplyControlValues() # Ask clroses to tell us all the defaults
self.Show()
# Command button event handlers. These are relabled when changing between auto
# and manual modes. They simply reflect the call to a method in the base class.
#
# Stop/Redraw button
def OnRedraw(self, event):
if verbose:
print 'OnRedraw'
self.cmd_stop()
# Skip/Forward
def OnForward(self, event):
if verbose:
print 'OnForward'
self.cmd_step()
# Redraw/Go
def OnGo(self, event):
if verbose:
print 'OnGo'
self.cmd_go()
# Reverse/Back
def OnBack(self, event):
if verbose:
print 'OnBack'
self.cmd_reverse()
# The clroses.roses class expects to have methods available that
# implement the missing parts of the functionality needed to do
# the actual work of getting the diagram to the screen and etc.
# Those are implemented here as the App* methods.
def AppClear(self):
if verbose:
print 'AppClear: clear screen'
self.rose_panel.Clear()
def AppCreateLine(self, line):
# print 'AppCreateLine, len', len(line), 'next', self.nextpt
self.rose_panel.DrawLines(line)
# Here when clroses has set a new style and/or petal value, update
# strings on display.
def AppSetParam(self, style, petals, vectors):
spin_panels['Style'].SetValue(style)
spin_panels['Petal'].SetValue(petals)
spin_panels['Vectors'].SetValue(vectors)
def AppSetIncrs(self, sincr, pincr):
spin_panels['Sincr'].SetValue(sincr)
spin_panels['Pincr'].SetValue(pincr)
def AppSetVectors(self, vectors, minvec, maxvec, skipvec, drawvec):
spin_panels['Vectors'].SetValue(vectors)
spin_panels['Minimum'].SetValue(minvec)
spin_panels['Maximum'].SetValue(maxvec)
spin_panels['Skip first'].SetValue(skipvec)
spin_panels['Draw only'].SetValue(drawvec)
def AppSetTakesVec(self, takes):
spin_panels['Takes'].SetLabel('Takes %d vectors' % takes)
# clroses doesn't change this data, so it's not telling us something
# we don't already know.
def AppSetTiming(self, vecPtick, msecPtick, delay):
spin_panels['Vec/tick'].SetValue(vecPtick)
spin_panels['msec/tick'].SetValue(msecPtick)
spin_panels['Delay'].SetValue(delay)
# Command buttons change their names based on the whether we're in auto
# or manual mode.
def AppCmdLabels(self, labels):
for name, label in map(None, ('Redraw', 'Forward', 'Go', 'Back'), labels):
ctrl_buttons[name].SetLabel(label)
# Timer methods. The paranoia about checking up on the callers is
# primarily because it's easier to check here. We expect that calls to
# AppAfter and OnTimer alternate, but don't verify that AppCancelTimer()
# is canceling anything as callers of that may be uncertain about what's
# happening.
# Method to provide a single callback after some amount of time.
def AppAfter(self, msec, callback):
if self.timer_callback:
print 'AppAfter: timer_callback already set!',
# print 'AppAfter:', callback
self.timer_callback = callback
self.timer.Start(msec, True)
# Method to cancel something we might be waiting for but have lost
# interest in.
def AppCancelTimer(self):
self.timer.Stop()
# print 'AppCancelTimer'
self.timer_callback = None
# When the timer happens, we come here and jump off to clroses internal code.
def OnTimer(self, evt):
callback = self.timer_callback
self.timer_callback = None
# print 'OnTimer,', callback
if callback:
callback() # Often calls AppAfter() and sets the callback
else:
print 'OnTimer: no callback!'
resize_delay = 300
def TriggerResize(self, size):
self.resize(size, self.resize_delay)
self.resize_delay = 100
def TriggerRedraw(self):
self.repaint(10)
# Called when data in spin boxes changes.
def OnSpinback(self, name, value):
if verbose:
print 'OnSpinback', name, value
if name == 'Style':
self.SetStyle(value)
elif name == 'Sincr':
self.SetSincr(value)
elif name == 'Petal':
self.SetPetals(value)
elif name == 'Pincr':
self.SetPincr(value)
elif name == 'Vectors':
self.SetVectors(value)
elif name == 'Minimum':
self.SetMinVec(value)
elif name == 'Maximum':
self.SetMaxVec(value)
elif name == 'Skip first':
self.SetSkipFirst(value)
elif name == 'Draw only':
self.SetDrawOnly(value)
elif name == 'Vec/tick':
self.SetStep(value)
elif name == 'msec/tick':
self.SetDrawDelay(value)
elif name == 'Delay':
self.SetWaitDelay(value)
else:
print 'OnSpinback: Don\'t recognize', name
verbose = 0 # Need some command line options...
spin_panels = {} # Hooks to get from rose to panel labels
ctrl_buttons = {} # Button widgets for command (NE) panel
app = wx.App(False)
MyFrame()
if verbose:
print 'spin_panels', spin_panels.keys()
print 'ctrl_buttons', ctrl_buttons.keys()
app.MainLoop()