stdex/include/stdex/string.hpp
Simon Rozman df4ab7aa79 string: upgrade sprintf to use specific locale
One can always revert to default locale by specifying NULL. Mind that
stdlib locale_t is used, as we are using its sprintf() implementation
and it is not simple to convert from std::locale to locale_t.

Signed-off-by: Simon Rozman <simon@rozman.si>
2023-07-21 11:53:48 +02:00

934 lines
25 KiB
C++

/*
SPDX-License-Identifier: MIT
Copyright © 2016-2023 Amebis
*/
#pragma once
#include "sal.hpp"
#include <assert.h>
#include <ctype.h>
#include <stdint.h>
#include <stdexcept>
namespace stdex
{
#ifdef _WIN32
using locale_t = _locale_t;
#else
using locale_t = ::locale_t;
#endif
///
/// UTF-16 code unit
///
#ifdef _WIN32
typedef wchar_t utf16_t;
#else
typedef char16_t utf16_t;
#endif
///
/// Test if the given UTF-16 code unit represents a high surrogate
///
/// \param[in] chr Code unit
///
inline bool is_high_surrogate(_In_ utf16_t chr)
{
return 0xd800 < chr && chr < 0xdc00;
}
///
/// Test if the given UTF-16 code unit represents a low surrogate
///
/// \param[in] chr Code unit
///
inline bool is_low_surrogate(_In_ utf16_t chr)
{
return 0xdc00 < chr && chr < 0xe000;
}
///
/// Test if the given UTF-16 code unit pair represents a surrogate pair
///
/// \param[in] str Pointer to first code unit
///
inline bool is_surrogate_pair(_In_reads_(2) const utf16_t* str)
{
return is_high_surrogate(str[0]) && is_low_surrogate(str[1]);
}
///
/// Combine UTF-8 surrogate pair into a Unicode code point
///
/// \param[in] str Pointer to first code unit
///
inline char32_t surrogate_pair_to_ucs4(_In_reads_(2) const utf16_t* str)
{
assert(is_surrogate_pair(str));
return
((char32_t)(str[0] - 0xd800) << 10) +
(char32_t)(str[1] - 0xdc00) +
0x10000;
}
///
/// Combine UTF-8 surrogate pair into a Unicode code point
///
/// \param[in] str Pointer to first code unit
///
inline void ucs4_to_surrogate_pair(_Out_writes_(2) utf16_t* str, _In_ char32_t chr)
{
assert(chr >= 0x10000);
chr -= 0x10000;
str[0] = 0xd800 + (char32_t)((chr >> 10) & 0x3ff);
str[1] = 0xdc00 + (char32_t)(chr & 0x3ff);
}
///
/// Test if the given Unicode code point is from the combining range
///
/// \param[in] chr Code point to test
///
inline bool iscombining(_In_ char32_t chr)
{
return
0x0300 <= chr && chr < 0x0370 ||
0x1dc0 <= chr && chr < 0x1e00 ||
0x20d0 <= chr && chr < 0x2100 ||
0xfe20 <= chr && chr < 0xfe30;
}
///
/// Test if the given code unit is line break or a part of it
///
/// \param[in] chr Code unit
///
template <class T>
inline size_t islbreak(_In_ T chr)
{
return chr == '\n' || chr == '\r';
}
///
/// Test if the given code point is line break
///
/// \param[in] chr Pointer to the first code unit of the code point
/// \param[in] count Code unit limit
///
template <class T>
inline size_t islbreak(_In_reads_or_z_opt_(count) const T* chr, _In_ size_t count)
{
_Analysis_assume_(chr || !count);
if (count >= 2 && (chr[0] == '\r' && chr[1] == '\n' || chr[0] == '\n' && chr[1] == '\r'))
return 2;
if (count > 1 && (chr[0] == '\n' || chr[0] == '\r'))
return 1;
return 0;
}
///
/// Return number of code units the glyph represents
///
/// \param[in] glyph Start of a glyph
/// \param[in] count Code unit limit
///
inline size_t glyphlen(_In_reads_or_z_opt_(count) const wchar_t* glyph, size_t count)
{
_Analysis_assume_(glyph || !count);
if (count) {
#ifdef _WIN32
size_t i = count < 2 || !is_surrogate_pair(glyph) ? 1 : 2;
#else
size_t i = 1;
#endif
for (; i < count && iscombining(glyph[i]); ++i);
return i;
}
return 0;
}
///
/// Calculate zero-terminated string length.
///
/// \param[in] str String
///
/// \return Number of code units excluding zero terminator in the string.
///
template <class T>
inline size_t strlen(_In_z_ const T* str)
{
assert(str);
size_t i;
for (i = 0; str[i]; ++i);
return i;
}
///
/// Calculate zero-terminated string length.
///
/// \param[in] str String
/// \param[in] count Code unit limit
///
/// \return Number of code units excluding zero terminator in the string.
///
template <class T>
inline size_t strnlen(_In_reads_or_z_opt_(count) const T* str, _In_ size_t count)
{
assert(str);
size_t i;
for (i = 0; i < count && str[i]; ++i);
return i;
}
constexpr auto npos{ static_cast<size_t>(-1) };
///
/// Find a code unit in a string.
///
/// \param[in] str String
/// \param[in] count Code unit count limit
/// \param[in] chr Code unit to search for
///
/// \return Offset to the first occurence of chr code unit or stdex::npos if not found.
///
template <class T>
inline size_t strnchr(
_In_reads_or_z_opt_(count) const T* str,
_In_ size_t count,
_In_ T chr)
{
assert(str || !count);
for (size_t i = 0; i < count && str[i]; ++i)
if (str[i] == chr) return i;
return npos;
}
///
/// Find a code unit in a string.
///
/// \param[in] str String
/// \param[in] count Code unit count limit
/// \param[in] chr Code unit to search for
///
/// \return Offset to the last occurence of chr code unit or stdex::npos if not found.
///
template <class T>
inline size_t strrnchr(
_In_reads_or_z_opt_(count) const T* str,
_In_ size_t count,
_In_ T chr)
{
assert(str || !count);
size_t z = npos;
for (size_t i = 0; i < count && str[i]; ++i)
if (str[i] == chr) z = i;
return z;
}
///
/// Find a code unit in a string case-insensitive
///
/// \param[in] str String
/// \param[in] count Code unit count limit
/// \param[in] chr Code unit to search for
///
/// \return Offset to the first occurence of chr code unit or stdex::npos if not found.
///
template <class T>
inline size_t strnichr(
_In_reads_or_z_opt_(count) const T* str,
_In_ size_t count,
_In_ T chr,
_In_ const std::locale& locale)
{
assert(str || !count);
const auto& ctype = std::use_facet<std::ctype<T>>(locale);
chr = ctype.tolower(chr);
for (size_t i = 0; i < count && str[i]; ++i)
if (ctype.tolower(str[i]) == chr) return i;
return npos;
}
///
/// Find a code unit in a string case-insensitive
///
/// \param[in] str String
/// \param[in] count Code unit count limit
/// \param[in] chr Code unit to search for
///
/// \return Offset to the last occurence of chr code unit or stdex::npos if not found.
///
template <class T>
inline size_t strrnichr(
_In_reads_or_z_opt_(count) const T* str,
_In_ size_t count,
_In_ T chr,
_In_ const std::locale& locale)
{
assert(str || !count);
const auto& ctype = std::use_facet<std::ctype<T>>(locale);
chr = ctype.tolower(chr);
size_t z = npos;
for (size_t i = 0; i < count && str[i]; ++i)
if (ctype.tolower(str[i]) == chr) z = i;
return z;
}
///
/// Binary compare two strings
///
/// \param[in] str1 String 1
/// \param[in] count1 String 1 code unit count limit
/// \param[in] str2 String 2
/// \param[in] count2 String 2 code unit count limit
///
/// \return Negative if str1<str2; positive if str1>str2; zero if str1==str2
///
template <class T1, class T2>
inline int strncmp(
_In_reads_or_z_opt_(count1) const T1* str1, _In_ size_t count1,
_In_reads_or_z_opt_(count2) const T2* str2, _In_ size_t count2)
{
assert(str1 || !count1);
assert(str2 || !count2);
size_t i; T1 a; T2 b;
for (i = 0; i < count1 && i < count2 && ((a = str1[i]) | (b = str2[i])); ++i) {
if (a > b) return +1;
if (a < b) return -1;
}
if (i < count1 && str1[i]) return +1;
if (i < count2 && str2[i]) return -1;
return 0;
}
///
/// Lexigraphically compare two strings
///
/// \param[in] str1 String 1
/// \param[in] count1 String 1 code unit count limit
/// \param[in] str2 String 2
/// \param[in] count2 String 2 code unit count limit
///
/// \return Negative if str1<str2; positive if str1>str2; zero if str1==str2
///
template <class T>
inline int strncoll(
_In_reads_or_z_opt_(count1) const T* str1, _In_ size_t count1,
_In_reads_or_z_opt_(count2) const T* str2, _In_ size_t count2,
_In_ const std::locale& locale)
{
assert(str1 || !count1);
assert(str2 || !count2);
auto& collate = std::use_facet<std::collate<T>>(locale);
return collate.compare(str1, str1 + count1, str2, str2 + count2);
}
///
/// Binary compare two strings case-insensitive
///
/// \param[in] str1 String 1
/// \param[in] count1 String 1 code unit count limit
/// \param[in] str2 String 2
/// \param[in] count2 String 2 code unit count limit
///
/// \return Negative if str1<str2; positive if str1>str2; zero if str1==str2
///
template <class T1, class T2>
inline int strnicmp(
_In_reads_or_z_opt_(count1) const T1* str1, _In_ size_t count1,
_In_reads_or_z_opt_(count2) const T2* str2, _In_ size_t count2,
_In_ const std::locale& locale)
{
assert(str1 || !count1);
assert(str2 || !count2);
size_t i; T1 a; T2 b;
const auto& ctype1 = std::use_facet<std::ctype<T1>>(locale);
const auto& ctype2 = std::use_facet<std::ctype<T2>>(locale);
for (i = 0; i < count1 && i < count2 && ((a = ctype1.tolower(str1[i])) | (b = ctype2.tolower(str2[i]))); i++) {
if (a > b) return +1;
if (a < b) return -1;
}
if (i < count1 && str1[i]) return +1;
if (i < count2 && str2[i]) return -1;
return 0;
}
///
/// Binary search for a substring
///
/// \param[in] str String to search in
/// \param[in] count String code unit count limit
/// \param[in] sample Substring to search for
///
/// \return Offset inside str where sample string is found; stdex::npos if not found
///
template <class T1, class T2>
inline size_t strnstr(
_In_reads_or_z_opt_(count) const T1* str,
_In_ size_t count,
_In_z_ const T2* sample)
{
assert(str || !count);
assert(sample);
for (size_t offset = 0;; ++offset) {
for (size_t i = offset, j = 0;; ++i, ++j) {
if (!sample[j])
return offset;
if (i >= count || !str[i])
return npos;
if (str[i] != sample[j])
break;
}
}
}
///
/// Binary search for a substring case-insensitive
///
/// \param[in] str String to search in
/// \param[in] count String code unit count limit
/// \param[in] sample Substring to search for
///
/// \return Offset inside str where sample string is found; stdex::npos if not found
///
template <class T1, class T2>
inline size_t strnistr(
_In_reads_or_z_opt_(count) const T1* str,
_In_ size_t count,
_In_z_ const T2* sample,
_In_ const std::locale& locale)
{
assert(str || !count);
assert(sample);
const auto& ctype1 = std::use_facet<std::ctype<T1>>(locale);
const auto& ctype2 = std::use_facet<std::ctype<T2>>(locale);
for (size_t offset = 0;; ++offset) {
for (size_t i = offset, j = 0;; ++i, ++j) {
if (!sample[j])
return offset;
if (i >= count || !str[i])
return npos;
if (ctype1.tolower(str[i]) != ctype2.tolower(sample[j]))
break;
}
}
}
///
/// Copy zero-terminated string
///
/// \param[in] dst Destination string
/// \param[in] src Source string
/// \param[in] count String code unit count limit
///
/// \return Number of code units excluding zero terminator in the dst string after the operation.
///
template <class T1, class T2>
inline size_t strncpy(
_Out_writes_(count) _Post_maybez_ T1* dst,
_In_reads_or_z_opt_(count) const T2* src, _In_ size_t count)
{
assert(dst && src || !count);
for (size_t i = 0; ; ++i) {
if (i >= count)
return i;
if ((dst[i] = src[i]) == 0)
return i;
}
}
///
/// Copy zero-terminated string
///
/// \param[in] dst Destination string
/// \param[in] count_dst Destination string code unit count limit
/// \param[in] src Source string
/// \param[in] count_src Source string code unit count limit
///
/// \return Number of code units excluding zero terminator in the dst string after the operation.
///
template <class T1, class T2>
inline size_t strncpy(
_Out_writes_(count_dst) _Post_maybez_ T1* dst, _In_ size_t count_dst,
_In_reads_or_z_opt_(count_src) const T2* src, _In_ size_t count_src)
{
assert(dst || !count_dst);
assert(src || !count_src);
for (size_t i = 0; ; ++i)
{
if (i > count_dst)
return i;
if (i > count_src) {
dst[i] = 0;
return i;
}
if ((dst[i] = src[i]) == 0)
return i;
}
}
///
/// Convert CRLF to LF
/// Source and destination strings may point to the same buffer for inline conversion.
///
/// \param[in] dst Destination string - must be same or longer than src
/// \param[in] src Source string
///
/// \return Number of code units excluding zero terminator in the dst string after the operation.
///
template <class T>
inline size_t crlf2nl(_Out_writes_z_(strlen(src)) T* dst, _In_z_ const T* src)
{
assert(dst);
assert(src);
size_t i, j;
for (i = j = 0; src[j];) {
if (src[j] != '\r' || src[j + 1] != '\n')
dst[i++] = src[j++];
else {
dst[i++] = '\n';
j += 2;
}
}
dst[i] = 0;
return i;
}
/// \cond internal
template <class T, class T_bin>
inline T_bin strtoint(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix,
_Out_ uint8_t& flags)
{
assert(str || !count);
assert(radix == 0 || 2 <= radix && radix <= 36);
size_t i = 0;
T_bin value = 0, digit,
max_ui = (T_bin)-1,
max_ui_pre1, max_ui_pre2;
flags = 0;
// Skip leading spaces.
for (;; ++i) {
if (i >= count || !str[i]) goto error;
if (!isspace(str[i])) break;
}
// Read the sign.
if (str[i] == '+') {
flags &= ~0x01;
++i;
if (i >= count || !str[i]) goto error;
}
else if (str[i] == '-') {
flags |= 0x01;
++i;
if (i >= count || !str[i]) goto error;
}
if (radix == 16) {
// On hexadecimal, allow leading 0x.
if (str[i] == '0' && i + 1 < count && (str[i + 1] == 'x' || str[i + 1] == 'X')) {
i += 2;
if (i >= count || !str[i]) goto error;
}
}
else if (!radix) {
// Autodetect radix.
if (str[i] == '0') {
++i;
if (i >= count || !str[i]) goto error;
if (str[i] == 'x' || str[i] == 'X') {
radix = 16;
++i;
if (i >= count || !str[i]) goto error;
}
else
radix = 8;
}
else
radix = 10;
}
// We have the radix.
max_ui_pre1 = max_ui / (T_bin)radix;
max_ui_pre2 = max_ui % (T_bin)radix;
for (;;) {
if ('0' <= str[i] && str[i] <= '9')
digit = (T_bin)str[i] - '0';
else if ('A' <= str[i] && str[i] <= 'Z')
digit = (T_bin)str[i] - 'A' + '\x0a';
else if ('a' <= str[i] && str[i] <= 'z')
digit = (T_bin)str[i] - 'a' + '\x0a';
else
goto error;
if (digit >= (T_bin)radix)
goto error;
if (value < max_ui_pre1 || // Multiplication nor addition will not overflow.
value == max_ui_pre1 && digit <= max_ui_pre2) // Small digits will not overflow.
value = value * (T_bin)radix + digit;
else {
// Overflow!
flags |= 0x02;
}
++i;
if (i >= count || !str[i])
goto error;
}
error:
if (end) *end = i;
return value;
}
/// \endcond
///
/// Parse string for a signed integer
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T, class T_bin>
T_bin strtoint(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
uint8_t flags;
T_bin value;
switch (sizeof(T_bin)) {
case 1:
value = (T_bin)strtoint<T, uint8_t>(str, count, end, radix, flags);
if ((flags & 0x01) && (value & 0x80)) {
// Sign bit is 1 => overflow.
flags |= 0x02;
}
return (flags & 0x02) ?
(flags & 0x01) ? (T_bin)0x80 : (T_bin)0x7f :
(flags & 0x01) ? -value : value;
case 2:
value = (T_bin)strtoint<T, T_U2>(str, count, end, radix, flags);
if ((flags & 0x01) && (value & 0x8000)) {
// Sign bit is 1 => overflow.
flags |= 0x02;
}
return (flags & 0x02) ?
(flags & 0x01) ? (T_bin)0x8000 : (T_bin)0x7fff :
(flags & 0x01) ? -value : value;
case 4:
value = (T_bin)strtoint<T, uint32_t>(str, count, end, radix, flags);
if ((flags & 0x01) && (value & 0x80000000)) {
// Sign bit is 1 => overflow.
flags |= 0x02;
}
return (flags & 0x02) ?
(flags & 0x01) ? (T_bin)0x80000000 : (T_bin)0x7fffffff :
(flags & 0x01) ? -value : value;
case 8:
value = (T_bin)strtoint<T, uint64_t>(str, count, end, radix, flags);
if ((flags & 0x01) && (value & 0x8000000000000000)) {
// Sign bit is 1 => overflow.
flags |= 0x02;
}
return (flags & 0x02) ?
(flags & 0x01) ? (T_bin)0x8000000000000000 : (T_bin)0x7fffffffffffffff :
(flags & 0x01) ? -value : value;
default:
throw std::invalid_argument("Unsupported bit length");
}
}
///
/// Parse string for an unsigned integer
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T, class T_bin>
inline T_bin strtouint(
_In_reads_or_z_opt_(count) const T* str,
_In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
uint8_t flags;
T_bin value;
switch (sizeof(T_bin)) {
case 1: value = (T_bin)strtoint<T, uint8_t>(str, count, end, radix, flags); break;
case 2: value = (T_bin)strtoint<T, uint16_t>(str, count, end, radix, flags); break;
case 4: value = (T_bin)strtoint<T, uint32_t>(str, count, end, radix, flags); break;
case 8: value = (T_bin)strtoint<T, uint64_t>(str, count, end, radix, flags); break;
default: throw std::invalid_argument("Unsupported bit length");
}
return (flags & 0x02) ?
(flags & 0x01) ? (T_bin)0 : (T_bin)-1 :
(flags & 0x01) ? ~value : value;
}
///
/// Parse string for a signed 32-bit integer
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T>
inline int32_t strto32(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
return strtoint<T, int32_t>(str, count, end, radix);
}
///
/// Parse string for a signed 64-bit integer
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T>
inline int64_t strto64(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
return strtoint<T, int64_t>(str, count, end, radix);
}
///
/// Parse string for a signed 32/64-bit integer
/// Dependent on platform CPU architecture
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T>
inline intptr_t strtoi(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
#if defined(_WIN64) || defined(__LP64__)
return (intptr_t)strto64(str, count, end, radix);
#else
return (intptr_t)strto32(str, count, end, radix);
#endif
}
///
/// Parse string for an unsigned 32-bit integer
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T>
inline uint32_t strtou32(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
return strtouint<T, uint32_t>(str, count, end, radix);
}
///
/// Parse string for an unsigned 64-bit integer
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T>
inline uint64_t strtou64(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
return strtouint<T, uint64_t>(str, count, end, radix);
}
///
/// Parse string for an unsigned 32/64-bit integer
/// Dependent on platform CPU architecture
///
/// \param[in] str String
/// \param[in] count String code unit count limit
/// \param[out] end On return, count of code units processed
/// \param[in] radix Number radix (0 - autodetect; 2..36)
///
/// \return Binary integer value
///
template <class T>
inline size_t strtoui(
_In_reads_or_z_opt_(count) const T* str, _In_ size_t count,
_Out_opt_ size_t* end,
_In_ int radix)
{
#if defined(_WIN64) || defined(__LP64__)
return (size_t)strtou64(str, count, end, radix);
#else
return (size_t)strtou32(str, count, end, radix);
#endif
}
/// \cond internal
inline int vsnprintf(_Out_z_cap_(capacity) char *str, _In_ size_t capacity, _In_z_ _Printf_format_string_ const char *format, _In_opt_ locale_t locale, _In_ va_list arg)
{
int r;
#ifdef _WIN32
// Don't use _vsnprintf_s(). It terminates the string even if we want to print to the edge of the buffer.
#pragma warning(suppress: 4996)
r = _vsnprintf_l(str, capacity, format, locale, arg);
#else
r = vsnprintf(str, capacity, format, arg);
#endif
if (r == -1 && strnlen(str, capacity) == capacity) {
// Buffer overrun. Estimate buffer size for the next iteration.
capacity += std::max<size_t>(capacity / 8, 0x80);
if (capacity > INT_MAX)
throw std::invalid_argument("string too big");
return (int)capacity;
}
return r;
}
inline int vsnprintf(_Out_z_cap_(capacity) wchar_t *str, _In_ size_t capacity, _In_z_ _Printf_format_string_ const wchar_t *format, _In_opt_ locale_t locale, _In_ va_list arg)
{
int r;
#ifdef _WIN32
// Don't use _vsnwprintf_s(). It terminates the string even if we want to print to the edge of the buffer.
#pragma warning(suppress: 4996)
r = _vsnwprintf_l(str, capacity, format, locale, arg);
#else
r = vswprintf(str, capacity, format, arg);
#endif
if (r == -1 && strnlen(str, capacity) == capacity) {
// Buffer overrun. Estimate buffer size for the next iteration.
capacity += std::max<size_t>(capacity / 8, 0x80);
if (capacity > INT_MAX)
throw std::invalid_argument("string too big");
return (int)capacity;
}
return r;
}
/// \endcond
///
/// Formats string using `printf()`.
///
/// \param[out] str String to append formatted text
/// \param[in ] format String template using `printf()` style
/// \param[in ] locale Stdlib locale used to perform formatting. Use `NULL` to use locale globally set by `setlocale()`.
/// \param[in ] arg Arguments to `format`
///
template<class _Elem, class _Traits, class _Ax>
inline void vappendf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, _In_opt_ locale_t locale, _In_ va_list arg)
{
_Elem buf[1024/sizeof(_Elem)];
// Try with stack buffer first.
int count = vsnprintf(buf, _countof(buf) - 1, format, locale, arg);
if (count >= 0) {
// Copy from stack.
str.append(buf, count);
} else {
for (size_t capacity = 2*1024/sizeof(_Elem);; capacity *= 2) {
// Allocate on heap and retry.
auto buf_dyn = std::make_unique<_Elem[]>(capacity);
count = vsnprintf(buf_dyn.get(), capacity - 1, format, locale, arg);
if (count >= 0) {
str.append(buf_dyn.get(), count);
break;
}
}
}
}
///
/// Formats string using `printf()`.
///
/// \param[out] str String to append formatted text
/// \param[in ] format String template using `printf()` style
/// \param[in ] locale Stdlib locale used to perform formatting. Use `NULL` to use locale globally set by `setlocale()`.
///
template<class _Elem, class _Traits, class _Ax>
inline void appendf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, _In_opt_ locale_t locale, ...)
{
va_list arg;
va_start(arg, locale);
vappendf(str, format, locale, arg);
va_end(arg);
}
///
/// Formats string using `printf()`.
///
/// \param[out] str Formatted string
/// \param[in ] format String template using `printf()` style
/// \param[in ] locale Stdlib locale used to perform formatting. Use `NULL` to use locale globally set by `setlocale()`.
/// \param[in ] arg Arguments to `format`
///
template<class _Elem, class _Traits, class _Ax>
inline void vsprintf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, _In_opt_ locale_t locale, _In_ va_list arg)
{
str.clear();
appendf(str, format, locale, arg);
}
///
/// Formats string using `printf()`.
///
/// \param[out] str Formatted string
/// \param[in ] format String template using `printf()` style
/// \param[in ] locale Stdlib locale used to perform formatting. Use `NULL` to use locale globally set by `setlocale()`.
///
template<class _Elem, class _Traits, class _Ax>
inline void sprintf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, _In_opt_ locale_t locale, ...)
{
va_list arg;
va_start(arg, locale);
vsprintf(str, format, locale, arg);
va_end(arg);
}
}