WinStd/include/WinStd/Common.h
Simon Rozman 33e2ac3da4 Address code analysis warnings
Signed-off-by: Simon Rozman <simon@rozman.si>
2019-06-14 14:54:42 +02:00

2064 lines
61 KiB
C++

/*
Copyright 1991-2019 Amebis
Copyright 2016 GÉANT
This file is part of WinStd.
Setup is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Setup is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Setup. If not, see <http://www.gnu.org/licenses/>.
*/
///
/// \defgroup WinStdGeneral General
/// General API
///
/// \defgroup WinStdSysHandles System Handles
/// Simplifies work with object handles of various type
///
/// \defgroup WinStdExceptions Exceptions
/// Additional exceptions
///
/// \defgroup WinStdStrFormat String Formatting
/// Formatted string generation
///
/// \par Example
/// \code
/// // Please note the PCSTR typecasting invokes an operator to return
/// // pointer to formatted buffer rather than class reference itself.
/// cout << (PCSTR)(winstd::string_printf("%i is less than %i.\n", 1, 5));
/// \endcode
///
/// \defgroup WinStdMemSanitize Auto-sanitize Memory Management
/// Sanitizes memory before dismissed
///
#include <Windows.h>
#include <stdarg.h>
#include <iostream>
#include <memory>
#include <stdexcept>
#include <string>
/// \addtogroup WinStdGeneral
/// @{
///
/// Public function calling convention
///
#ifndef WINSTD_API
#if defined(WINSTD_DLL)
#define WINSTD_API __declspec(dllexport)
#elif defined(WINSTD_DLLIMP)
#define WINSTD_API __declspec(dllimport)
#else
#define WINSTD_API
#endif
#endif
///
/// Class/struct with no virtual table declaration
///
/// Use for storing flat data.
///
/// This macro bypasses Doxygen limitation to parse class/struct declarations with parentheses.
///
#define WINSTD_NOVTABLE __declspec(novtable)
///
/// "L" stringizing macro
///
#ifndef __L
#define __L(x) L ## x
#endif
///
/// Makes string Unicode
///
#ifndef _L
#define _L(x) __L(x)
#endif
///
/// Stringizing macro helper
///
#define STRING_IMPL(x) #x
///
/// Stringizing macro
///
#define STRING(x) STRING_IMPL(x)
///
/// Declares a class as non-copyable
///
#define WINSTD_NONCOPYABLE(C) \
private: \
inline C (_In_ const C &h); \
inline C& operator=(_In_ const C &h);
///
/// Declares a class as non-movable
///
#define WINSTD_NONMOVABLE(C) \
private: \
inline C (_Inout_ C &&h); \
inline C& operator=(_Inout_ C &&h);
/// @}
/// \addtogroup WinStdStrFormat
/// @{
///
/// LPTSTR printf/scanf format specifier
///
#ifdef UNICODE
#define PRINTF_LPTSTR "ls"
#else
#define PRINTF_LPTSTR "s"
#endif
///
/// LPOLESTR printf/scanf format specifier
///
#ifdef OLE2ANSI
#define PRINTF_LPOLESTR "hs"
#else
#define PRINTF_LPOLESTR "ls"
#endif
#ifdef _UNICODE
#define _tcin (std::wcin )
#define _tcout (std::wcout)
#define _tcerr (std::wcerr)
#define _tclog (std::wclog)
#else
#define _tcin (std::cin )
#define _tcout (std::cout)
#define _tcerr (std::cerr)
#define _tclog (std::clog)
#endif
/// @}
/// \addtogroup WinStdSysHandles
/// @{
///
/// Implements default constructors and operators to prevent their auto-generation by compiler.
///
#define HANDLE_IMPL(C, INVAL) \
public: \
inline C ( ) { } \
inline C (_In_ handle_type h) : handle<handle_type, INVAL>( h ) { } \
inline C (_Inout_ C &&h) noexcept : handle<handle_type, INVAL>(std::move(h)) { } \
inline C& operator=(_In_ handle_type h) { handle<handle_type, INVAL>::operator=( h ); return *this; } \
inline C& operator=(_Inout_ C &&h) noexcept { handle<handle_type, INVAL>::operator=(std::move(h)); return *this; } \
WINSTD_NONCOPYABLE(C)
///
/// Implements default constructors and operators to prevent their auto-generation by compiler.
///
#define DPLHANDLE_IMPL(C, INVAL) \
public: \
inline C ( ) { } \
inline C (_In_ handle_type h) : dplhandle<handle_type, INVAL>( h ) { } \
inline C (_In_ const C &h) : dplhandle<handle_type, INVAL>(duplicate_internal(h.m_h)) { } \
inline C (_Inout_ C &&h) noexcept : dplhandle<handle_type, INVAL>(std::move (h )) { } \
inline C& operator=(_In_ handle_type h) { dplhandle<handle_type, INVAL>::operator=( h ); return *this; } \
inline C& operator=(_In_ const C &h) { dplhandle<handle_type, INVAL>::operator=( h ); return *this; } \
inline C& operator=(_Inout_ C &&h) noexcept { dplhandle<handle_type, INVAL>::operator=(std::move(h)); return *this; } \
private:
/// @}
#ifndef _FormatMessage_format_string_
#define _FormatMessage_format_string_
#endif
#ifndef _LPCBYTE_DEFINED
#define _LPCBYTE_DEFINED
typedef const BYTE *LPCBYTE;
#endif
namespace winstd
{
/// \addtogroup WinStdStrFormat
/// @{
///
/// Multi-byte / Wide-character string (according to _UNICODE)
///
#ifdef _UNICODE
typedef std::wstring tstring;
#else
typedef std::string tstring;
#endif
/// @}
template <class _Ty> struct LocalFree_delete;
template <class _Ty> struct LocalFree_delete<_Ty[]>;
template<class _Ty, class _Dx = std::default_delete<_Ty>> class ref_unique_ptr;
template<class _Ty, class _Dx> class ref_unique_ptr<_Ty[], _Dx>;
template <class T, T INVAL> class handle;
template <class T, T INVAL> class dplhandle;
template <class T> class vector_queue;
template <typename _Tn> class num_runtime_error;
class WINSTD_API win_runtime_error;
/// \addtogroup WinStdGeneral
/// @{
///
/// Helper function template for returning pointers to std::unique_ptr
///
/// \param[inout] owner Original owner of the pointer
///
/// \returns A helper wrapper class to handle returning a reference to the pointer
///
template<class _Ty, class _Dx> inline ref_unique_ptr<_Ty, _Dx> get_ptr(_Inout_ std::unique_ptr<_Ty, _Dx> &owner);
///
/// Helper function template for returning pointers to std::unique_ptr
/// (specialization for arrays)
///
/// \param[inout] owner Original owner of the pointer
///
/// \returns A helper wrapper class to handle returning a reference to the pointer
///
template<class _Ty, class _Dx> inline ref_unique_ptr<_Ty[], _Dx> get_ptr(_Inout_ std::unique_ptr<_Ty[], _Dx> &owner);
/// @}
/// \addtogroup WinStdStrFormat
/// @{
template<class _Elem, class _Traits = std::char_traits<_Elem>, class _Ax = std::allocator<_Elem> > class basic_string_printf;
///
/// Single-byte character implementation of a class to support string formatting using `printf()` style templates
///
typedef basic_string_printf<char, std::char_traits<char>, std::allocator<char> > string_printf;
///
/// Wide character implementation of a class to support string formatting using `printf()` style templates
///
typedef basic_string_printf<wchar_t, std::char_traits<wchar_t>, std::allocator<wchar_t> > wstring_printf;
///
/// Multi-byte / Wide-character formatted string (according to _UNICODE)
///
#ifdef _UNICODE
typedef wstring_printf tstring_printf;
#else
typedef string_printf tstring_printf;
#endif
template<class _Elem, class _Traits = std::char_traits<_Elem>, class _Ax = std::allocator<_Elem> > class basic_string_msg;
///
/// Single-byte character implementation of a class to support string formatting using `FormatMessage()` style templates
///
typedef basic_string_msg<char, std::char_traits<char>, std::allocator<char> > string_msg;
///
/// Wide character implementation of a class to support string formatting using `FormatMessage()` style templates
///
typedef basic_string_msg<wchar_t, std::char_traits<wchar_t>, std::allocator<wchar_t> > wstring_msg;
///
/// Multi-byte / Wide-character formatted string (according to _UNICODE)
///
#ifdef _UNICODE
typedef wstring_msg tstring_msg;
#else
typedef string_msg tstring_msg;
#endif
template<class _Elem, class _Traits = std::char_traits<_Elem>, class _Ax = std::allocator<_Elem> > class basic_string_guid;
class WINSTD_API string_guid;
class WINSTD_API wstring_guid;
///
/// Multi-byte / Wide-character string GUID (according to _UNICODE)
///
#ifdef _UNICODE
typedef wstring_guid tstring_guid;
#else
typedef string_guid tstring_guid;
#endif
/// @}
/// \addtogroup WinStdMemSanitize
/// @{
template<class _Ty> class sanitizing_allocator;
template<size_t N> class __declspec(novtable) sanitizing_blob;
///
/// A sanitizing variant of std::string
///
/// \note
/// `sanitizing_string` introduces a performance penalty. However, it provides an additional level of security.
/// Use for security sensitive data memory storage only.
///
typedef std::basic_string<char, std::char_traits<char>, sanitizing_allocator<char> > sanitizing_string;
///
/// A sanitizing variant of std::wstring
///
/// \note
/// `sanitizing_wstring` introduces a performance penalty. However, it provides an additional level of security.
/// Use for security sensitive data memory storage only.
///
typedef std::basic_string<wchar_t, std::char_traits<wchar_t>, sanitizing_allocator<wchar_t> > sanitizing_wstring;
///
/// Multi-byte / Wide-character sanitizing string (according to _UNICODE)
///
#ifdef _UNICODE
typedef sanitizing_wstring sanitizing_tstring;
#else
typedef sanitizing_string sanitizing_tstring;
#endif
/// @}
}
/// \addtogroup WinStdStrFormat
/// @{
///
/// Formats string using `printf()`.
///
/// \param[out] str Buffer to receive string
/// \param[in ] capacity Size of `str` in characters
/// \param[in ] format String template using `printf()` style
/// \param[in ] arg Arguments to `format`
///
/// \returns Number of characters in result.
///
#if _MSC_VER <= 1600
inline int vsnprintf(_Out_z_cap_(capacity) char *str, _In_ size_t capacity, _In_z_ _Printf_format_string_ const char *format, _In_ va_list arg);
#endif
///
/// Formats string using `printf()`.
///
/// \param[out] str Buffer to receive string
/// \param[in ] capacity Size of `str` in characters
/// \param[in ] format String template using `printf()` style
/// \param[in ] arg Arguments to `format`
///
/// \returns Number of characters in result.
///
inline int vsnprintf(_Out_z_cap_(capacity) wchar_t *str, _In_ size_t capacity, _In_z_ _Printf_format_string_ const wchar_t *format, _In_ va_list arg);
///
/// Formats string using `printf()`.
///
/// \param[out] str Formatted string
/// \param[in ] format String template using `printf()` style
/// \param[in ] arg Arguments to `format`
///
/// \returns Number of characters in result.
///
template<class _Elem, class _Traits, class _Ax> inline int vsprintf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, _In_ va_list arg);
///
/// Formats string using `printf()`.
///
/// \param[out] str Formatted string
/// \param[in ] format String template using `printf()` style
///
/// \returns Number of characters in result.
///
template<class _Elem, class _Traits, class _Ax> inline int sprintf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, ...);
///
/// Formats a message string.
///
/// \sa [FormatMessage function](https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351.aspx)
///
template<class _Traits, class _Ax> inline DWORD FormatMessage(_In_ DWORD dwFlags, _In_opt_ LPCVOID lpSource, _In_ DWORD dwMessageId, _In_ DWORD dwLanguageId, _Inout_ std::basic_string<char, _Traits, _Ax> &str, _In_opt_ va_list *Arguments);
///
/// Formats a message string.
///
/// \sa [FormatMessage function](https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351.aspx)
///
template<class _Traits, class _Ax> inline DWORD FormatMessage(_In_ DWORD dwFlags, _In_opt_ LPCVOID lpSource, _In_ DWORD dwMessageId, _In_ DWORD dwLanguageId, _Inout_ std::basic_string<wchar_t, _Traits, _Ax> &str, _In_opt_ va_list *Arguments);
/// @}
#pragma once
#include <assert.h>
#include <tchar.h>
#include <memory>
#include <vector>
/// \addtogroup WinStdGeneral
/// @{
#ifndef WINSTD_STACK_BUFFER_BYTES
///
/// Size of the stack buffer in bytes used for initial system function call
///
/// Some system functions with variable length output data fail for
/// insufficient buffer sizes, and return an exact buffer length required.
/// The function helpers use a fixed size stack buffer first. If the stack
/// buffer really prooved sufficient, the helper allocates the exact length
/// output on heap and copies the data without calling the system function
/// again. Otherwise it allocates the exact length output on heap and retries.
///
/// \note
/// Decrease this value in case of stack overflow.
///
#define WINSTD_STACK_BUFFER_BYTES 1024
#endif
/// @}
namespace winstd
{
/// \addtogroup WinStdGeneral
/// @{
///
/// Deleter for unique_ptr using LocalFree
///
template <class _Ty>
struct LocalFree_delete
{
typedef LocalFree_delete<_Ty> _Myt; ///< This type
///
/// Default construct
///
LocalFree_delete() {}
///
/// Construct from another LocalFree_delete
///
template <class _Ty2> LocalFree_delete(const LocalFree_delete<_Ty2>&) {}
///
/// Delete a pointer
///
/// \sa [LocalFree function](https://msdn.microsoft.com/en-us/library/windows/desktop/aa366730.aspx)
///
void operator()(_Ty *_Ptr) const
{
LocalFree(_Ptr);
}
};
///
/// Deleter for unique_ptr to array of unknown size using LocalFree
///
template <class _Ty>
struct LocalFree_delete<_Ty[]>
{
typedef LocalFree_delete<_Ty> _Myt; ///< This type
///
/// Default construct
///
LocalFree_delete() {}
///
/// Delete a pointer
///
void operator()(_Frees_ptr_opt_ _Ty *_Ptr) const
{
LocalFree(_Ptr);
}
///
/// Delete a pointer of another type
///
/// \sa [LocalFree function](https://msdn.microsoft.com/en-us/library/windows/desktop/aa366730.aspx)
///
template<class _Other>
void operator()(_Other *) const
{
LocalFree(_Ptr);
}
};
///
/// Helper class for returning pointers to std::unique_ptr
///
template<class _Ty, class _Dx>
class ref_unique_ptr
{
public:
///
/// Takes ownership of the pointer
///
/// \param[inout] owner Object to attach helper to
///
inline ref_unique_ptr(_Inout_ std::unique_ptr<_Ty, _Dx> &owner) :
m_own(owner),
m_ptr(owner.release())
{}
///
/// Moves object
///
/// \param[inout] other Source object
///
inline ref_unique_ptr(_Inout_ ref_unique_ptr<_Ty, _Dx> &&other) :
m_own(other.m_own),
m_ptr(other.m_ptr)
{
other.m_ptr = nullptr;
}
///
/// Returns ownership of the pointer
///
inline ~ref_unique_ptr()
{
if (m_ptr != nullptr)
m_own.reset(m_ptr);
}
///
/// Operator for pointer-to-pointer parameters by value use-cases.
///
/// \return Pointer to the pointer
///
inline operator typename _Ty**()
{
return &m_ptr;
}
///
/// Operator for reverence-to-pointer parameters by value use-cases.
///
/// \return Reference to the pointer
///
inline operator typename _Ty*&()
{
return m_ptr;
}
protected:
std::unique_ptr<_Ty, _Dx> &m_own; ///< Original owner of the pointer
_Ty *m_ptr; ///< Pointer
};
///
/// Helper class for returning pointers to std::unique_ptr
/// (specialization for arrays)
///
template<class _Ty, class _Dx>
class ref_unique_ptr<_Ty[], _Dx>
{
public:
///
/// Takes ownership of the pointer
///
/// \param[inout] owner Object to attach helper to
///
inline ref_unique_ptr(_Inout_ std::unique_ptr<_Ty[], _Dx> &owner) :
m_own(owner),
m_ptr(owner.release())
{}
///
/// Moves object
///
/// \param[inout] other Source object
///
inline ref_unique_ptr(_Inout_ ref_unique_ptr<_Ty[], _Dx> &&other) :
m_own(other.m_own),
m_ptr(other.m_ptr)
{
other.m_ptr = nullptr;
}
///
/// Returns ownership of the pointer
///
inline ~ref_unique_ptr()
{
if (m_ptr != nullptr)
m_own.reset(m_ptr);
}
///
/// Operator for pointer-to-pointer parameters by value use-cases.
///
/// \return Pointer to the pointer
///
inline operator typename _Ty**()
{
return &m_ptr;
}
///
/// Operator for reverence-to-pointer parameters by value use-cases.
///
/// \return Reference to the pointer
///
inline operator typename _Ty*&()
{
return m_ptr;
}
protected:
std::unique_ptr<_Ty[], _Dx> &m_own; ///< Original owner of the pointer
_Ty *m_ptr; ///< Pointer
};
template<class _Ty, class _Dx>
inline ref_unique_ptr<_Ty, _Dx> get_ptr(_Inout_ std::unique_ptr<_Ty, _Dx> &owner)
{
return ref_unique_ptr<_Ty, _Dx>(owner);
}
template<class _Ty, class _Dx>
inline ref_unique_ptr<_Ty[], _Dx> get_ptr(_Inout_ std::unique_ptr<_Ty[], _Dx> &owner)
{
return ref_unique_ptr<_Ty[], _Dx>(owner);
}
/// @}
/// \addtogroup WinStdSysHandles
/// @{
///
/// Base abstract template class to support generic object handle keeping
///
/// It provides basic operators and methods common to all descendands of this class establishing a base to ease the replacement of native object handle type with classes in object-oriented approach.
///
template <class T, const T INVAL>
class handle
{
public:
///
/// Datatype of the object handle this template class handles
///
typedef T handle_type;
///
/// Invalid handle value
///
static const T invalid;
///
/// Initializes a new class instance with the object handle set to INVAL.
///
inline handle() : m_h(invalid)
{
}
///
/// Initializes a new class instance with an already available object handle.
///
/// \param[in] h Initial object handle value
///
inline handle(_In_ handle_type h) : m_h(h)
{
}
///
/// Move constructor
///
/// \param[inout] h A rvalue reference of another object
///
inline handle(_Inout_ handle<handle_type, INVAL> &&h) noexcept
{
// Transfer handle.
m_h = h.m_h;
h.m_h = invalid;
}
private:
// This class is noncopyable.
handle(_In_ const handle<handle_type, INVAL> &h);
handle<handle_type, INVAL>& operator=(_In_ const handle<handle_type, INVAL> &h);
public:
///
/// Attaches already available object handle.
///
/// \param[in] h Object handle value
///
inline handle<handle_type, INVAL>& operator=(_In_ handle_type h)
{
attach(h);
return *this;
}
///
/// Move assignment
///
/// \param[inout] h A rvalue reference of another object
///
inline handle<handle_type, INVAL>& operator=(_Inout_ handle<handle_type, INVAL> &&h) noexcept
{
if (this != std::addressof(h)) {
// Transfer handle.
if (m_h != invalid)
free_internal();
m_h = h.m_h;
h.m_h = invalid;
}
return *this;
}
///
/// Auto-typecasting operator
///
/// \return Object handle
///
inline operator handle_type() const
{
return m_h;
}
///
/// Returns the object handle value when the object handle is a pointer to a value (class, struct, etc.).
///
/// \return Object handle value
///
inline handle_type*& operator*() const
{
assert(m_h != invalid);
return *m_h;
}
///
/// Returns the object handle reference.
/// \return Object handle reference
///
inline handle_type* operator&()
{
assert(m_h == invalid);
return &m_h;
}
///
/// Provides object handle member access when the object handle is a pointer to a class or struct.
///
/// \return Object handle
///
inline handle_type operator->() const
{
assert(m_h != invalid);
return m_h;
}
///
/// Tests if the object handle is INVAL.
///
/// \return
/// - Non zero when object handle is INVAL;
/// - Zero otherwise.
///
inline bool operator!() const
{
return m_h == invalid;
}
///
/// Is handle less than?
///
/// \param[in] h Object handle to compare against
/// \return
/// - Non zero when object handle is less than h;
/// - Zero otherwise.
///
inline bool operator<(_In_ handle_type h) const
{
return m_h < h;
}
///
/// Is handle less than or equal to?
///
/// \param[in] h Object handle to compare against
/// \return
/// - Non zero when object handle is less than or equal to h;
/// - Zero otherwise.
///
inline bool operator<=(_In_ handle_type h) const
{
return !operator>(h);
}
///
/// Is handle greater than or equal to?
///
/// \param[in] h Object handle to compare against
/// \return
/// - Non zero when object handle is greater than or equal to h;
/// - Zero otherwise.
///
inline bool operator>=(_In_ handle_type h) const
{
return !operator<(h);
}
///
/// Is handle greater than?
///
/// \param[in] h Object handle to compare against
/// \return
/// - Non zero when object handle is greater than h;
/// - Zero otherwise.
///
inline bool operator>(_In_ handle_type h) const
{
return h < m_h;
}
///
/// Is handle not equal to?
///
/// \param[in] h Object handle to compare against
/// \return
/// - Non zero when object handle is not equal to h;
/// - Zero otherwise.
///
inline bool operator!=(_In_ handle_type h) const
{
return !operator==(h);
}
///
/// Is handle equal to?
///
/// \param[in] h Object handle to compare against
/// \return
/// - Non zero when object handle is equal to h;
/// - Zero otherwise.
///
inline bool operator==(_In_ handle_type h) const
{
return m_h == h;
}
///
/// Sets a new object handle for the class
///
/// When the current object handle of the class is non-INVAL, the object is destroyed first.
///
/// \param[in] h New object handle
///
inline void attach(_In_opt_ handle_type h)
{
if (m_h != invalid)
free_internal();
m_h = h;
}
///
/// Dismisses the object handle from this class
///
/// \return Object handle
///
inline handle_type detach()
{
handle_type h = m_h;
m_h = invalid;
return h;
}
///
/// Destroys the object
///
inline void free()
{
if (m_h != invalid) {
free_internal();
m_h = invalid;
}
}
/// @}
protected:
///
/// Abstract member function that must be implemented by child classes to do the actual object destruction.
///
virtual void free_internal() = 0;
protected:
handle_type m_h; ///< Object handle
};
template <class T, const T INVAL>
const T handle<T, INVAL>::invalid = INVAL;
///
/// Base abstract template class to support object handle keeping for objects that support handle duplication
///
template <class T, T INVAL>
class dplhandle : public handle<T, INVAL>
{
public:
///
/// Initializes a new class instance with the object handle set to INVAL.
///
inline dplhandle()
{
}
///
/// Initializes a new class instance with an already available object handle.
///
/// \param[in] h Initial object handle value
///
inline dplhandle(_In_ handle_type h) : handle<handle_type, INVAL>(h)
{
}
///
/// Copy constructor
///
/// \param[inout] h A reference of another object
///
inline dplhandle<handle_type, INVAL>(_In_ const dplhandle<handle_type, INVAL> &h) : handle<handle_type, INVAL>(internal_duplicate(h.m_h))
{
}
///
/// Move constructor
///
/// \param[inout] h A rvalue reference of another object
///
inline dplhandle<handle_type, INVAL>(_Inout_ dplhandle<handle_type, INVAL> &&h) noexcept : handle<handle_type, INVAL>(std::move(h))
{
}
///
/// Attaches already available object handle.
///
/// \param[in] h Object handle value
///
inline dplhandle<handle_type, INVAL>& operator=(_In_ handle_type h)
{
handle<handle_type, INVAL>::operator=(h);
return *this;
}
///
/// Duplicates the object.
///
/// \param[in] h Object
///
inline dplhandle<handle_type, INVAL>& operator=(_In_ const dplhandle<handle_type, INVAL> &h)
{
if (this != std::addressof(h)) {
if (h.m_h != invalid) {
handle_type h_new = duplicate_internal(h.m_h);
if (h_new != invalid) {
if (m_h != invalid)
free_internal();
m_h = h_new;
} else
assert(0); // Could not duplicate the handle
} else {
if (m_h != invalid)
free_internal();
m_h = invalid;
}
}
return *this;
}
///
/// Moves the object.
///
/// \param[inout] h A rvalue reference of another object
///
inline dplhandle<handle_type, INVAL>& operator=(_Inout_ dplhandle<handle_type, INVAL> &&h) noexcept
{
handle<handle_type, INVAL>::operator=(std::move(h));
return *this;
}
///
/// Duplicates and returns a new object handle.
///
/// \return Duplicated object handle
///
inline handle_type duplicate() const
{
return m_h != invalid ? duplicate_internal(m_h) : invalid;
}
///
/// Duplicates an object handle and sets a new object handle.
///
/// \param[in] h Object handle of existing object
///
/// \return
/// - true when duplication succeeds;
/// - false when duplication fails. In case of failure obtaining the extended error information is object type specific (for example: `GetLastError()`).
///
inline bool attach_duplicated(_In_ handle_type h)
{
if (m_h != invalid)
free_internal();
return h != invalid ? (m_h = duplicate_internal(h)) != invalid : (m_h = invalid, true);
}
protected:
///
/// Abstract member function that must be implemented by child classes to do the actual object handle duplication.
///
/// \param[in] h Object handle of existing object
///
/// \return Duplicated object handle
///
virtual handle_type duplicate_internal(_In_ handle_type h) const = 0;
};
/// @}
/// \addtogroup WinStdGeneral
/// @{
///
/// Helper class to allow limited size FIFO queues implemented as vector of elements
///
template <class T>
class vector_queue
{
public:
///
/// Type to measure element count and indices in
///
typedef size_t size_type;
///
/// Element type
///
typedef T value_type;
///
/// Reference to element type
///
typedef T& reference;
///
/// Constant reference to element type
///
typedef const T& const_reference;
///
/// Pointer to element
///
typedef T* pointer;
///
/// Constant pointer to element
///
typedef const T* const_pointer;
public:
///
/// Construct queue of fixed size.
///
/// \param[in] size_max Maximum number of elements. Please note this cannot be changed later.
///
inline vector_queue(_In_ size_type size_max) :
m_data(new value_type[size_max]),
m_head(0),
m_count(0),
m_size_max(size_max)
{
}
///
/// Copies existing queue.
///
/// \param[in] other Queue to copy from
///
inline vector_queue(_In_ const vector_queue<value_type> &other) :
m_data(new value_type[other.m_size_max]),
m_head(other.m_head),
m_count(other.m_count),
m_size_max(other.m_size_max)
{
// Copy elements.
for (size_type i = 0; i < m_count; i++) {
size_type i_l = abs(i);
m_data[i_l] = other.m_data[i_l];
}
}
///
/// Destroys the queue
///
virtual ~vector_queue()
{
if (m_data) delete [] m_data;
}
///
/// Moves existing queue.
///
/// \param[inout] other Queue to move
///
inline vector_queue(_Inout_ vector_queue<value_type> &&other) :
m_data (std::move(other.m_data )),
m_head (std::move(other.m_head )),
m_count (std::move(other.m_count )),
m_size_max(std::move(other.m_size_max))
{
// Reset other to consistent state.
other.m_data = NULL;
other.m_head = 0;
other.m_count = 0;
other.m_size_max = 0;
}
///
/// Copies existing queue.
///
/// \param[in] other Queue to copy from
///
inline vector_queue<value_type>& operator=(_In_ const vector_queue<value_type> &other)
{
if (this != std::addressof(other)) {
m_head = other.m_head;
m_count = other.m_count;
m_size_max = other.m_size_max;
// Copy elements.
if (m_data) delete [] m_data;
m_data = new value_type[other.m_size_max];
for (size_type i = 0; i < m_count; i++) {
size_type i_l = abs(i);
m_data[i_l] = other.m_data[i_l];
}
}
return *this;
}
///
/// Moves existing queue.
///
/// \param[inout] other Queue to move
///
inline vector_queue<value_type>& operator=(_Inout_ vector_queue<value_type> &&other)
{
if (this != std::addressof(other)) {
m_data = std::move(other.m_data );
m_head = std::move(other.m_head );
m_count = std::move(other.m_count );
m_size_max = std::move(other.m_size_max);
// Reset other to consistent state.
other.m_data = NULL;
other.m_head = 0;
other.m_count = 0;
other.m_size_max = 0;
}
return *this;
}
///
/// Returns the number of elements in the vector.
///
inline size_type size() const
{
return m_count;
}
///
/// Returns the number of elements that the queue can contain before overwriting head ones.
///
inline size_type capacity() const
{
return m_size_max;
}
///
/// Erases the elements of the queue.
///
inline void clear()
{
m_count = 0;
}
///
/// Tests if the queue is empty.
///
inline bool empty() const
{
return m_count == 0;
}
///
/// Returns a reference to the element at a specified location in the queue.
///
/// \param[in] pos The subscript or position number of the element to reference in the queue.
///
inline reference at(_In_ size_type pos)
{
if (pos >= m_count) throw std::invalid_argument("Invalid subscript");
return m_data[abs(pos)];
}
///
/// Returns a reference to the element at a specified location in the queue.
///
/// \param[in] pos The subscript or position number of the element to reference in the queue.
///
inline reference operator[](_In_ size_type pos)
{
if (pos >= m_count) throw std::invalid_argument("Invalid subscript");
return m_data[abs(pos)];
}
///
/// Returns a constant reference to the element at a specified location in the queue.
///
/// \param[in] pos The subscript or position number of the element to reference in the queue.
///
inline const_reference at(_In_ size_type pos) const
{
if (pos >= m_count) throw std::invalid_argument("Invalid subscript");
return m_data[abs(pos)];
}
///
/// Returns a constant reference to the element at a specified location in the queue.
///
/// \param[in] pos The subscript or position number of the element to reference in the queue.
///
inline const_reference operator[](_In_ size_type pos) const
{
if (pos >= m_count) throw std::invalid_argument("Invalid subscript");
return m_data[abs(pos)];
}
///
/// Returns a reference to the element at the absolute location in the queue.
///
/// \note Absolute means "measured from the beginning of the storage".
///
/// \param[in] pos The absolute subscript or position number of the element to reference in the queue.
///
inline reference at_abs(_In_ size_type pos)
{
if (pos >= m_size_max) throw std::invalid_argument("Invalid subscript");
return m_data[pos];
}
///
/// Returns a constant reference to the element at the absolute location in the queue: measured from the beginning of the storage.
///
/// \note Absolute means "measured from the beginning of the storage".
///
/// \param[in] pos The absolute subscript or position number of the element to reference in the queue.
///
inline const_reference at_abs(_In_ size_type pos) const
{
if (pos >= m_size_max) throw std::invalid_argument("Invalid subscript");
return m_data[pos];
}
///
/// Copies an existing element to the end of the queue, overriding the first one when queue is out of space.
///
/// \param[in] v Element to copy to the end of the queue.
///
/// \returns The absolute subscript or position number the element was copied to.
///
inline size_type push_back(_In_ const value_type &v)
{
if (m_count < m_size_max) {
size_type pos = abs(m_count);
m_data[pos] = v;
m_count++;
return pos;
} else {
size_type pos = m_head;
m_data[pos] = v;
m_head = abs(1);
return pos;
}
}
///
/// Moves the element to the end of the queue, overriding the first one when queue is out of space.
///
/// \param[in] v Element to move to the end of the queue.
///
/// \returns The absolute subscript or position number the element was moved to.
///
inline size_type push_back(_Inout_ value_type&&v)
{
if (m_count < m_size_max) {
size_type pos = abs(m_count);
m_data[pos] = std::move(v);
m_count++;
return pos;
} else {
size_type pos = m_head;
m_data[pos] = std::move(v);
m_head = abs(1);
return pos;
}
}
///
/// Removes (dequeues) the last element of the queue.
///
inline void pop_back()
{
if (!m_count) throw std::invalid_argument("Empty storage");
m_count--;
}
///
/// Copies an existing element to the head of the queue, overriding the last one when queue is out of space and moving all others one place right.
///
/// \param[in] v Element to copy to the head of the queue.
///
/// \returns The absolute subscript or position number the element was copied to.
///
inline size_type push_front(_In_ const value_type &v)
{
m_head = abs(-1);
if (m_count < m_size_max)
m_count++;
m_data[m_head] = v;
return m_head;
}
///
/// Moves the element to the head of the queue, overriding the last one when queue is out of space and moving all others one place right.
///
/// \param[in] v Element to move to the head of the queue.
///
/// \returns The absolute subscript or position number the element was moved to.
///
inline size_type push_front(_Inout_ value_type&&v)
{
m_head = abs(-1);
if (m_count < m_size_max)
m_count++;
m_data[m_head] = std::move(v);
return m_head;
}
///
/// Removes (dequeues) the head element of the queue.
///
inline void pop_front()
{
if (!m_count) throw std::invalid_argument("Empty storage");
m_head = abs(1);
m_count--;
}
///
/// Returns a reference to the head element in the queue.
///
inline reference front()
{
if (!m_count) throw std::invalid_argument("Empty storage");
return m_data[m_head];
}
///
/// Returns a constant reference to the head element in the queue.
///
inline const_reference front() const
{
if (!m_count) throw std::invalid_argument("Empty storage");
return m_data[m_head];
}
///
/// Returns a reference to the last element in the queue.
///
inline reference back()
{
return m_data[tail()];
}
///
/// Returns a constant reference to the last element in the queue.
///
inline const_reference back() const
{
return m_data[tail()];
}
///
/// Returns absolute subscript or position number of the head element in the queue. The element does not need to exist.
///
inline size_type head() const
{
return m_head;
}
///
/// Returns absolute subscript or position number of the last element in the queue. The element must exist.
///
inline size_type tail() const
{
if (!m_count) throw std::invalid_argument("Empty storage");
return abs(m_count - 1);
}
///
/// Returns absolute subscript or position number of the given element in the queue.
inline size_type abs(_In_ size_type pos) const
{
return (m_head + pos) % m_size_max;
}
protected:
value_type *m_data; ///< Underlying data container
size_type m_head; ///< Index of the first element
size_type m_count; ///< Number of elements
size_type m_size_max; ///< Maximum size
};
/// @}
/// \addtogroup WinStdExceptions
/// @{
///
/// Numerical runtime error
///
template <typename _Tn>
class num_runtime_error : public std::runtime_error
{
public:
typedef _Tn error_type; ///< Error number type
public:
///
/// Constructs an exception
///
/// \param[in] num Numeric error code
/// \param[in] msg Error message
///
inline num_runtime_error(_In_ error_type num, _In_ const std::string& msg) :
m_num(num),
runtime_error(msg)
{
}
///
/// Constructs an exception
///
/// \param[in] num Numeric error code
/// \param[in] msg Error message
///
inline num_runtime_error(_In_ error_type num, _In_z_ const char *msg) :
m_num(num),
runtime_error(msg)
{
}
///
/// Copies an exception
///
/// \param[in] other Exception to copy from
///
inline num_runtime_error(const num_runtime_error<_Tn> &other) :
m_num(other.m_num),
runtime_error(other)
{
}
///
/// Copies an exception
///
/// \param[in] other Exception to copy from
///
inline num_runtime_error& operator=(const num_runtime_error<_Tn> &other)
{
if (this != addressof(other)) {
*(runtime_error*)this = other;
m_num = other.m_num;
}
return *this;
}
///
/// Returns the Windows error number
///
inline error_type number() const
{
return m_num;
}
protected:
error_type m_num; ///< Numeric error code
};
///
/// Windows runtime error
///
class WINSTD_API win_runtime_error : public num_runtime_error<DWORD>
{
public:
///
/// Constructs an exception
///
/// \param[in] num Windows error code
/// \param[in] msg Error message
///
inline win_runtime_error(_In_ error_type num, _In_ const std::string& msg) : num_runtime_error<DWORD>(num, msg)
{
}
///
/// Constructs an exception
///
/// \param[in] num Windows error code
/// \param[in] msg Error message
///
inline win_runtime_error(_In_ error_type num, _In_z_ const char *msg) : num_runtime_error<DWORD>(num, msg)
{
}
///
/// Constructs an exception using `GetLastError()`
///
/// \param[in] msg Error message
///
inline win_runtime_error(_In_ const std::string& msg) : num_runtime_error<DWORD>(GetLastError(), msg)
{
}
///
/// Constructs an exception using `GetLastError()`
///
/// \param[in] msg Error message
///
inline win_runtime_error(_In_z_ const char *msg) : num_runtime_error<DWORD>(GetLastError(), msg)
{
}
///
/// Copies an exception
///
/// \param[in] other Exception to copy from
///
inline win_runtime_error(const win_runtime_error &other) : num_runtime_error<DWORD>(other)
{
}
///
/// Returns a user-readable Windows error message
///
/// \sa [FormatMessage function](https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-formatmessage)
///
inline tstring msg(_In_opt_ DWORD dwLanguageId = 0) const
{
tstring str;
if (FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0, m_num, dwLanguageId, str, NULL)) {
// Stock Windows error messages contain CRLF. Well... Trim all the trailing white space.
str.erase(str.find_last_not_of(_T(" \t\n\r\f\v")) + 1);
} else
sprintf(str, m_num >= 0x10000 ? _T("Error 0x%X") : _T("Error %u"), m_num);
return str;
}
};
/// @}
/// \addtogroup WinStdStrFormat
/// @{
///
/// Base template class to support string formatting using `printf()` style templates
///
template<class _Elem, class _Traits, class _Ax>
class basic_string_printf : public std::basic_string<_Elem, _Traits, _Ax>
{
public:
/// \name Initializing string using template in memory
/// @{
///
/// Initializes a new string and formats its contents using `printf()` style template.
///
/// \param[in] format String template using `printf()` style
///
inline basic_string_printf(_In_z_ _Printf_format_string_ const _Elem *format, ...)
{
va_list arg;
va_start(arg, format);
vsprintf(*this, format, arg);
va_end(arg);
}
/// @}
/// \name Initializing string using template in resources
/// @{
///
/// Initializes a new string and formats its contents using `printf()` style template in resources.
///
/// \param[in] hInstance Resource module handle
/// \param[in] nFormatID Resource ID of the string template using `printf()` style
///
inline basic_string_printf(_In_ HINSTANCE hInstance, _In_ UINT nFormatID, ...)
{
_Myt format;
ATLENSURE(format.LoadString(hInstance, nFormatID));
va_list arg;
va_start(arg, nFormatID);
vsprintf(*this, format, arg);
va_end(arg);
}
///
/// Initializes a new string and formats its contents using `printf()` style template in resources.
///
/// \param[in] hInstance Resource module handle
/// \param[in] wLanguageID Resource language
/// \param[in] nFormatID Resource ID of the string template using `printf()` style
///
inline basic_string_printf(_In_ HINSTANCE hInstance, _In_ WORD wLanguageID, _In_ UINT nFormatID, ...)
{
_Myt format;
ATLENSURE(format.LoadString(hInstance, nFormatID, wLanguageID));
va_list arg;
va_start(arg, nFormatID);
vsprintf(*this, format, arg);
va_end(arg);
}
/// }@
};
///
/// Base template class to support string formatting using `FormatMessage()` style templates
///
template<class _Elem, class _Traits, class _Ax>
class basic_string_msg : public std::basic_string<_Elem, _Traits, _Ax>
{
public:
/// \name Initializing string using template in memory
/// @{
///
/// Initializes a new string and formats its contents using `FormatMessage()` style template.
///
/// \param[in] format String template using `FormatMessage()` style
///
inline basic_string_msg(_In_z_ _FormatMessage_format_string_ const _Elem *format, ...)
{
va_list arg;
va_start(arg, format);
FormatMessage(FORMAT_MESSAGE_FROM_STRING, format, 0, 0, *this, &arg);
va_end(arg);
}
/// @}
/// \name Initializing string using template in resources
/// @{
///
/// Initializes a new string and formats its contents using `FormatMessage()` style template in resources.
///
/// \param[in] hInstance Resource module handle
/// \param[in] nFormatID Resource ID of the string template using `FormatMessage()` style
///
inline basic_string_msg(_In_ HINSTANCE hInstance, _In_ UINT nFormatID, ...)
{
_Myt format(GetManager());
ATLENSURE(format.LoadString(hInstance, nFormatID));
va_list arg;
va_start(arg, nFormatID);
FormatMessage(FORMAT_MESSAGE_FROM_STRING, format, 0, 0, *this, &arg);
va_end(arg);
}
///
/// Initializes a new string and formats its contents using `FormatMessage()` style template in resources.
///
/// \param[in] hInstance Resource module handle
/// \param[in] wLanguageID Resource language
/// \param[in] nFormatID Resource ID of the string template using `FormatMessage()` style
///
inline basic_string_msg(_In_ HINSTANCE hInstance, _In_ WORD wLanguageID, _In_ UINT nFormatID, ...)
{
_Myt format(GetManager());
ATLENSURE(format.LoadString(hInstance, nFormatID, wLanguageID));
va_list arg;
va_start(arg, nFormatID);
FormatMessage(FORMAT_MESSAGE_FROM_STRING, format, 0, 0, *this, &arg);
va_end(arg);
}
/// @}
///
/// Initializes a new string and formats its contents using `FormatMessage()` style.
///
/// \sa [FormatMessage function](https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351.aspx)
///
inline basic_string_msg(_In_ DWORD dwFlags, _In_opt_ LPCVOID lpSource, _In_ DWORD dwMessageId, _In_ DWORD dwLanguageId, _In_opt_ va_list *Arguments)
{
FormatMessage(dwFlags & ~FORMAT_MESSAGE_ARGUMENT_ARRAY, lpSource, dwMessageId, dwLanguageId, *this, Arguments);
}
///
/// Initializes a new string and formats its contents using `FormatMessage()` style.
///
/// \sa [FormatMessage function](https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351.aspx)
///
inline basic_string_msg(_In_ DWORD dwFlags, _In_opt_ LPCVOID lpSource, _In_ DWORD dwMessageId, _In_ DWORD dwLanguageId, _In_opt_ DWORD_PTR *Arguments)
{
FormatMessage(dwFlags | FORMAT_MESSAGE_ARGUMENT_ARRAY, lpSource, dwMessageId, dwLanguageId, *this, (va_list*)Arguments);
}
///
/// Initializes a new string and formats its contents using `FormatMessage()` style.
///
/// \sa [FormatMessage function](https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351.aspx)
///
inline basic_string_msg(_In_ DWORD dwFlags, _In_z_ LPCTSTR pszFormat, _In_opt_ va_list *Arguments)
{
FormatMessage(dwFlags & ~FORMAT_MESSAGE_ARGUMENT_ARRAY | FORMAT_MESSAGE_FROM_STRING, pszFormat, 0, 0, *this, Arguments);
}
///
/// Initializes a new string and formats its contents using `FormatMessage()` style.
///
/// \sa [FormatMessage function](https://msdn.microsoft.com/en-us/library/windows/desktop/ms679351.aspx)
///
inline basic_string_msg(_In_ DWORD dwFlags, _In_z_ LPCTSTR pszFormat, _In_opt_ DWORD_PTR *Arguments)
{
FormatMessage(dwFlags | FORMAT_MESSAGE_ARGUMENT_ARRAY | FORMAT_MESSAGE_FROM_STRING, pszFormat, 0, 0, *this, (va_list*)Arguments);
}
};
///
/// Base template class to support converting GUID to string
///
template<class _Elem, class _Traits, class _Ax>
class basic_string_guid : public std::basic_string<_Elem, _Traits, _Ax>
{
public:
/// \name Initializing string using template in memory
/// @{
///
/// Initializes a new string and formats its contents to string representation of given GUID.
///
/// \param[in] guid GUID to convert
/// \param[in] format A `printf()` syntax template to convert GUID to string (i.e. `"{%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}"`)
///
inline basic_string_guid(_In_ const GUID &guid, _In_z_ _Printf_format_string_ const _Elem *format)
{
sprintf<_Elem, _Traits, _Ax>(*this, format,
guid.Data1,
guid.Data2,
guid.Data3,
guid.Data4[0], guid.Data4[1],
guid.Data4[2], guid.Data4[3], guid.Data4[4], guid.Data4[5], guid.Data4[6], guid.Data4[7]);
}
/// @}
};
///
/// Single-byte character implementation of a class to support converting GUID to string
///
class WINSTD_API string_guid : public basic_string_guid<char, std::char_traits<char>, std::allocator<char> >
{
public:
/// \name Initializing string using template in memory
/// @{
///
/// Initializes a new string and formats its contents to string representation of given GUID.
///
/// \param[in] guid GUID to convert
///
inline string_guid(_In_ const GUID &guid) :
basic_string_guid<char, std::char_traits<char>, std::allocator<char> >(guid, "{%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}")
{
}
/// @}
};
///
/// Wide character implementation of a class to support converting GUID to string
///
class WINSTD_API wstring_guid : public basic_string_guid<wchar_t, std::char_traits<wchar_t>, std::allocator<wchar_t> >
{
public:
/// \name Initializing string using template in memory
/// @{
///
/// Initializes a new string and formats its contents to string representation of given GUID.
///
/// \param[in] guid GUID to convert
///
inline wstring_guid(_In_ const GUID &guid) :
basic_string_guid<wchar_t, std::char_traits<wchar_t>, std::allocator<wchar_t> >(guid, L"{%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X}")
{
}
/// @}
};
/// @}
/// \addtogroup WinStdMemSanitize
/// @{
// winstd::sanitizing_allocator::destroy() member generates _Ptr parameter not used warning for primitive datatypes _Ty.
#pragma warning(push)
#pragma warning(disable: 4100)
///
/// An allocator template that sanitizes each memory block before it is destroyed or reallocated
///
/// \note
/// `sanitizing_allocator` introduces a performance penalty. However, it provides an additional level of security.
/// Use for security sensitive data memory storage only.
///
template<class _Ty>
class sanitizing_allocator : public std::allocator<_Ty>
{
public:
typedef std::allocator<_Ty> _Mybase; ///< Base type
///
/// Convert this type to sanitizing_allocator<_Other>
///
template<class _Other>
struct rebind
{
typedef sanitizing_allocator<_Other> other; ///< Other type
};
///
/// Construct default allocator
///
inline sanitizing_allocator() : _Mybase()
{
}
///
/// Construct by copying
///
inline sanitizing_allocator(_In_ const sanitizing_allocator<_Ty> &_Othr) : _Mybase(_Othr)
{
}
///
/// Construct from a related allocator
///
template<class _Other>
inline sanitizing_allocator(_In_ const sanitizing_allocator<_Other> &_Othr) : _Mybase(_Othr)
{
}
///
/// Deallocate object at _Ptr sanitizing its content first
///
inline void deallocate(_In_ pointer _Ptr, _In_ size_type _Size)
{
// Sanitize then free.
SecureZeroMemory(_Ptr, _Size);
_Mybase::deallocate(_Ptr, _Size);
}
};
#pragma warning(pop)
///
/// Sanitizing BLOB
///
template<size_t N>
class __declspec(novtable) sanitizing_blob
{
public:
///
/// Constructs uninitialized BLOB
///
inline sanitizing_blob()
{
ZeroMemory(m_data, N);
}
///
/// Sanitizes BLOB
///
inline ~sanitizing_blob()
{
SecureZeroMemory(m_data, N);
}
public:
unsigned char m_data[N]; ///< BLOB data
};
/// @}
}
// Do not use _vsnprintf_s/_vsnwprintf_s(), since it terminates string by force even when we explicitly want to write unterminated string.
// Threfore turn off compiler warning instead. ;)
#pragma warning(push)
#pragma warning(disable: 4995)
#pragma warning(disable: 4996)
#if _MSC_VER <= 1600
inline int vsnprintf(_Out_z_cap_(capacity) char *str, _In_ size_t capacity, _In_z_ _Printf_format_string_ const char *format, _In_ va_list arg)
{
return _vsnprintf(str, capacity, format, arg);
}
#endif
inline int vsnprintf(_Out_z_cap_(capacity) wchar_t *str, _In_ size_t capacity, _In_z_ _Printf_format_string_ const wchar_t *format, _In_ va_list arg)
{
return _vsnwprintf(str, capacity, format, arg);
}
template<class _Elem, class _Traits, class _Ax>
inline int vsprintf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, _In_ va_list arg)
{
_Elem buf[WINSTD_STACK_BUFFER_BYTES/sizeof(_Elem)];
// Try with stack buffer first.
int count = vsnprintf(buf, _countof(buf) - 1, format, arg);
if (count >= 0) {
// Copy from stack.
str.assign(buf, count);
} else {
for (size_t capacity = 2*WINSTD_STACK_BUFFER_BYTES/sizeof(_Elem);; capacity *= 2) {
// Allocate on heap and retry.
std::unique_ptr<_Elem[]> buf_dyn(new _Elem[capacity]);
count = vsnprintf(buf_dyn.get(), capacity - 1, format, arg);
if (count >= 0) {
str.assign(buf_dyn.get(), count);
break;
}
}
}
return count;
}
#pragma warning(pop)
template<class _Elem, class _Traits, class _Ax>
inline int sprintf(_Inout_ std::basic_string<_Elem, _Traits, _Ax> &str, _In_z_ _Printf_format_string_ const _Elem *format, ...)
{
va_list arg;
va_start(arg, format);
int res = vsprintf(str, format, arg);
va_end(arg);
return res;
}
template<class _Traits, class _Ax>
inline DWORD FormatMessage(_In_ DWORD dwFlags, _In_opt_ LPCVOID lpSource, _In_ DWORD dwMessageId, _In_ DWORD dwLanguageId, _Inout_ std::basic_string<char, _Traits, _Ax> &str, _In_opt_ va_list *Arguments)
{
std::unique_ptr<CHAR[], winstd::LocalFree_delete<CHAR[]> > lpBuffer;
DWORD dwResult = FormatMessageA(dwFlags | FORMAT_MESSAGE_ALLOCATE_BUFFER, lpSource, dwMessageId, dwLanguageId, reinterpret_cast<LPSTR>((LPSTR*)get_ptr(lpBuffer)), 0, Arguments);
if (dwResult)
str.assign(lpBuffer.get(), dwResult);
return dwResult;
}
template<class _Traits, class _Ax>
inline DWORD FormatMessage(_In_ DWORD dwFlags, _In_opt_ LPCVOID lpSource, _In_ DWORD dwMessageId, _In_ DWORD dwLanguageId, _Inout_ std::basic_string<wchar_t, _Traits, _Ax> &str, _In_opt_ va_list *Arguments)
{
std::unique_ptr<WCHAR[], winstd::LocalFree_delete<WCHAR[]> > lpBuffer;
DWORD dwResult = FormatMessageW(dwFlags | FORMAT_MESSAGE_ALLOCATE_BUFFER, lpSource, dwMessageId, dwLanguageId, reinterpret_cast<LPWSTR>((LPWSTR*)get_ptr(lpBuffer)), 0, Arguments);
if (dwResult)
str.assign(lpBuffer.get(), dwResult);
return dwResult;
}