/* Copyright 2015-2016 Amebis Copyright 2016 GÉANT This file is part of GÉANTLink. GÉANTLink is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GÉANTLink is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GÉANTLink. If not, see . */ #include "StdAfx.h" using namespace std; using namespace winstd; ////////////////////////////////////////////////////////////////////// // eap::module ////////////////////////////////////////////////////////////////////// eap::module::module(eap_type_t eap_method) : m_eap_method(eap_method), m_instance(NULL) { m_ep.create(&EAPMETHOD_TRACE_EVENT_PROVIDER); m_ep.write(&EAPMETHOD_TRACE_EVT_MODULE_LOAD, event_data((DWORD)m_eap_method), event_data::blank); m_heap.create(0, 0, 0); } eap::module::~module() { m_ep.write(&EAPMETHOD_TRACE_EVT_MODULE_UNLOAD, event_data((DWORD)m_eap_method), event_data::blank); } EAP_ERROR* eap::module::make_error(_In_ DWORD dwErrorCode, _In_opt_z_ LPCWSTR pszRootCauseString, _In_opt_z_ LPCWSTR pszRepairString, _In_opt_ DWORD dwReasonCode, _In_opt_ LPCGUID pRootCauseGuid, _In_opt_ LPCGUID pRepairGuid, _In_opt_ LPCGUID pHelpLinkGuid) const { // Calculate memory size requirement. SIZE_T nRootCauseSize = pszRootCauseString != NULL && pszRootCauseString[0] ? (wcslen(pszRootCauseString) + 1)*sizeof(WCHAR) : 0, nRepairStringSize = pszRepairString != NULL && pszRepairString [0] ? (wcslen(pszRepairString ) + 1)*sizeof(WCHAR) : 0, nEapErrorSize = sizeof(EAP_ERROR) + nRootCauseSize + nRepairStringSize; EAP_ERROR *pError = (EAP_ERROR*)HeapAlloc(m_heap, 0, nEapErrorSize); if (!pError) return NULL; BYTE *p = (BYTE*)(pError + 1); // Fill the error descriptor. pError->dwWinError = dwErrorCode; pError->type.eapType.type = (BYTE)m_eap_method; pError->type.eapType.dwVendorId = 0; pError->type.eapType.dwVendorType = 0; pError->type.dwAuthorId = 67532; pError->dwReasonCode = dwReasonCode; pError->rootCauseGuid = pRootCauseGuid != NULL ? *pRootCauseGuid : GUID_NULL; pError->repairGuid = pRepairGuid != NULL ? *pRepairGuid : GUID_NULL; pError->helpLinkGuid = pHelpLinkGuid != NULL ? *pHelpLinkGuid : GUID_NULL; if (nRootCauseSize) { pError->pRootCauseString = (LPWSTR)p; memcpy(pError->pRootCauseString, pszRootCauseString, nRootCauseSize); p += nRootCauseSize; } else pError->pRootCauseString = NULL; if (nRepairStringSize) { pError->pRepairString = (LPWSTR)p; memcpy(pError->pRepairString, pszRepairString, nRepairStringSize); p += nRepairStringSize; } else pError->pRepairString = NULL; return pError; } BYTE* eap::module::alloc_memory(_In_ size_t size) { return (BYTE*)HeapAlloc(m_heap, 0, size); } void eap::module::free_memory(_In_ BYTE *ptr) { #if !EAP_ENCRYPT_BLOBS // Since we do security here and some of the BLOBs contain credentials, sanitize every memory block before freeing. SecureZeroMemory(ptr, HeapSize(m_heap, 0, ptr)); #endif HeapFree(m_heap, 0, ptr); } void eap::module::free_error_memory(_In_ EAP_ERROR *err) { // pRootCauseString and pRepairString always trail the ppEapError to reduce number of (de)allocations. HeapFree(m_heap, 0, err); } void eap::module::log_error(_In_ const EAP_ERROR *err) const { assert(err); // Write trace event. vector evt_desc; evt_desc.reserve(8); evt_desc.push_back(event_data(err->dwWinError)); DWORD dwType = err->type.eapType.type; evt_desc.push_back(event_data(dwType)); evt_desc.push_back(event_data(err->dwReasonCode)); evt_desc.push_back(event_data(&(err->rootCauseGuid), sizeof(GUID))); evt_desc.push_back(event_data(&(err->repairGuid), sizeof(GUID))); evt_desc.push_back(event_data(&(err->helpLinkGuid), sizeof(GUID))); evt_desc.push_back(event_data(err->pRootCauseString)); evt_desc.push_back(event_data(err->pRepairString)); m_ep.write(&EAPMETHOD_TRACE_EVT_EAP_ERROR, (ULONG)evt_desc.size(), evt_desc.data()); } eap::config_method* eap::module::make_config_method() { return NULL; } bool eap::module::encrypt(_In_ HCRYPTPROV hProv, _In_bytecount_(size) const void *data, _In_ size_t size, _Out_ std::vector &enc, _Out_ EAP_ERROR **ppEapError, _Out_opt_ HCRYPTHASH hHash) const { assert(ppEapError); // Generate 256-bit AES session key. crypt_key key_aes; if (!CryptGenKey(hProv, CALG_AES_256, MAKELONG(CRYPT_EXPORTABLE, 256), &key_aes)) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" CryptGenKey failed.")); return false; } // Import the public RSA key. HRSRC res = FindResource(m_instance, MAKEINTRESOURCE(IDR_EAP_KEY_PUBLIC), RT_RCDATA); assert(res); HGLOBAL res_handle = LoadResource(m_instance, res); assert(res_handle); crypt_key key_rsa; unique_ptr > keyinfo_data; DWORD keyinfo_size = 0; if (!CryptDecodeObjectEx(X509_ASN_ENCODING, X509_PUBLIC_KEY_INFO, (const BYTE*)::LockResource(res_handle), ::SizeofResource(m_instance, res), CRYPT_DECODE_ALLOC_FLAG, NULL, &keyinfo_data, &keyinfo_size)) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" CryptDecodeObjectEx failed.")); return false; } if (!key_rsa.import_public(hProv, X509_ASN_ENCODING, keyinfo_data.get())) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" Public key import failed.")); return false; } // Export AES session key encrypted with public RSA key. vector > buf; if (!CryptExportKey(key_aes, key_rsa, SIMPLEBLOB, 0, buf)) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" CryptExportKey failed.")); return false; } enc.assign(buf.begin(), buf.end()); // Pre-allocate memory to allow space, as encryption will grow the data. buf.assign((const unsigned char*)data, (const unsigned char*)data + size); DWORD dwBlockLen; if (!CryptGetKeyParam(key_aes, KP_BLOCKLEN, dwBlockLen, 0)) dwBlockLen = 0; buf.reserve((size + dwBlockLen) / dwBlockLen * dwBlockLen); // Encrypt the data using AES key. if (!CryptEncrypt(key_aes, hHash, TRUE, 0, buf)) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" CryptEncrypt failed.")); return false; } // Append encrypted data. enc.insert(enc.cend(), buf.begin(), buf.end()); return true; } bool eap::module::encrypt_md5(_In_ HCRYPTPROV hProv, _In_bytecount_(size) const void *data, _In_ size_t size, _Out_ std::vector &enc, _Out_ EAP_ERROR **ppEapError) const { // Create hash. crypt_hash hash; if (!hash.create(hProv, CALG_MD5)) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" Creating MD5 hash failed.")); return false; } // Encrypt data. if (!encrypt(hProv, data, size, enc, ppEapError, hash)) return false; // Calculate MD5 hash. vector hash_bin; if (!CryptGetHashParam(hash, HP_HASHVAL, hash_bin, 0)) { *ppEapError = make_error(GetLastError(), _T(__FUNCTION__) _T(" Calculating MD5 hash failed.")); return false; } // Append hash. enc.insert(enc.end(), hash_bin.begin(), hash_bin.end()); return true; }