/* Copyright 2015-2016 Amebis Copyright 2016 GÉANT This file is part of GÉANTLink. GÉANTLink is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GÉANTLink is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GÉANTLink. If not, see . */ #include "StdAfx.h" using namespace std; using namespace winstd; ////////////////////////////////////////////////////////////////////// // eap::method_ttls ////////////////////////////////////////////////////////////////////// eap::method_ttls::method_ttls(_In_ module &module, _In_ config_method_ttls &cfg, _In_ credentials_ttls &cred) : m_cfg(cfg), m_cred(cred), m_version(version_0), method_tls(module, cfg, cred) { } eap::method_ttls::method_ttls(_Inout_ method_ttls &&other) : m_cfg ( other.m_cfg ), m_cred ( other.m_cred ), m_version (std::move(other.m_version)), m_inner (std::move(other.m_inner )), method_tls(std::move(other )) { } eap::method_ttls& eap::method_ttls::operator=(_Inout_ method_ttls &&other) { if (this != std::addressof(other)) { (method_tls&)*this = std::move(other ); m_version = std::move(other.m_version); m_inner = std::move(other.m_inner ); } return *this; } void eap::method_ttls::begin_session( _In_ DWORD dwFlags, _In_ const EapAttributes *pAttributeArray, _In_ HANDLE hTokenImpersonateUser, _In_opt_ DWORD dwMaxSendPacketSize) { method_tls::begin_session(dwFlags, pAttributeArray, hTokenImpersonateUser, dwMaxSendPacketSize); // Initialize inner method. switch (m_cfg.m_inner->get_method_id()) { case eap_type_legacy_pap : m_inner.reset(new method_pap (m_module, (config_method_pap &)*m_cfg.m_inner, (credentials_pass &)*m_cred.m_inner.get())); break; case eap_type_legacy_mschapv2: m_inner.reset(new method_mschapv2(m_module, (config_method_mschapv2&)*m_cfg.m_inner, (credentials_pass&)*m_cred.m_inner.get())); break; default: throw invalid_argument(__FUNCTION__ " Unsupported inner authentication method."); } m_inner->begin_session(dwFlags, pAttributeArray, hTokenImpersonateUser, MAXDWORD); } void eap::method_ttls::end_session() { m_inner->end_session(); method_tls::end_session(); } void eap::method_ttls::process_request_packet( _In_bytecount_(dwReceivedPacketSize) const void *pReceivedPacket, _In_ DWORD dwReceivedPacketSize, _Inout_ EapPeerMethodOutput *pEapOutput) { if (((const EapPacket*)pReceivedPacket)->Code == EapCodeRequest && (((const EapPacket*)pReceivedPacket)->Data[1] & packet_ttls::flags_start)) { // This is a start EAP-TTLS packet. // Determine minimum EAP-TTLS version supported by server and us. version_t ver_remote = (version_t)(((const EapPacket*)pReceivedPacket)->Data[1] & packet_ttls::flags_ver_mask); m_version = std::min(ver_remote, version_0); m_module.log_event(&EAPMETHOD_TTLS_HANDSHAKE_START, event_data((unsigned int)eap_type_ttls), event_data((unsigned char)m_version), event_data((unsigned char)ver_remote), event_data::blank); } // Do the TLS. method_tls::process_request_packet(pReceivedPacket, dwReceivedPacketSize, pEapOutput); } void eap::method_ttls::get_response_packet( _Inout_bytecap_(*dwSendPacketSize) void *pSendPacket, _Inout_ DWORD *pdwSendPacketSize) { method_tls::get_response_packet(pSendPacket, pdwSendPacketSize); // Change packet type to EAP-TTLS, and add EAP-TTLS version. ((EapPacket*)pSendPacket)->Data[0] = (BYTE)eap_type_ttls; ((EapPacket*)pSendPacket)->Data[1] &= ~packet_ttls::flags_ver_mask; ((EapPacket*)pSendPacket)->Data[1] |= m_version; } void eap::method_ttls::get_result( _In_ EapPeerMethodResultReason reason, _Inout_ EapPeerMethodResult *ppResult) { // Do the TLS. method_tls::get_result(reason, ppResult); if (m_phase == phase_application_data) { // Get inner method result. EapPeerMethodResult result = {}; m_inner->get_result(reason, &result); if (result.fSaveConnectionData) ppResult->fSaveConnectionData = TRUE; if (m_inner->m_cfg.m_last_status != config_method_with_cred::status_success) { // Inner method admitted problems, so autentication must have proceeded to inner authentication already. // Therefore, outer authentication must have been OK. m_cfg.m_last_status = config_method_with_cred::status_success; } } } void eap::method_ttls::derive_msk() { const unsigned char *_key_block; #if EAP_TLS < EAP_TLS_SCHANNEL // // TLS versions 1.0 [RFC2246] and 1.1 [RFC4346] define the same PRF // function, and any EAP-TTLSv0 implementation based on these versions // of TLS must use the PRF defined therein. It is expected that future // versions of or extensions to the TLS protocol will permit alternative // PRF functions to be negotiated. If an alternative PRF function is // specified for the underlying TLS version or has been negotiated // during the TLS handshake negotiation, then that alternative PRF // function must be used in EAP-TTLSv0 computations instead of the TLS // 1.0/1.1 PRF. // // [Extensible Authentication Protocol Tunneled Transport Layer Security Authenticated Protocol Version 0 (EAP-TTLSv0) (Chapter 7.8. Use of TLS PRF)](https://tools.ietf.org/html/rfc5281#section-7.8) // // If we use PRF_SHA256() the key exchange fails. Therefore we use PRF of TLS 1.0/1.1. // static const unsigned char s_label[] = "ttls keying material"; sanitizing_blob seed(s_label, s_label + _countof(s_label) - 1); seed.insert(seed.end(), (const unsigned char*)&m_random_client, (const unsigned char*)(&m_random_client + 1)); seed.insert(seed.end(), (const unsigned char*)&m_random_server, (const unsigned char*)(&m_random_server + 1)); sanitizing_blob key_block(prf(m_cp, CALG_TLS1PRF, m_master_secret, seed, 2*sizeof(tls_random))); _key_block = key_block.data(); #else // EAP-TTLS uses different label in PRF for MSK derivation than EAP-TLS. static const DWORD s_key_id = 0x01; // EAP-TTLSv0 Keying Material static const SecPkgContext_EapPrfInfo s_prf_info = { 0, sizeof(s_key_id), (PBYTE)&s_key_id }; SECURITY_STATUS status = SetContextAttributes(m_sc_ctx, SECPKG_ATTR_EAP_PRF_INFO, (void*)&s_prf_info, sizeof(s_prf_info)); if (FAILED(status)) throw sec_runtime_error(status, __FUNCTION__ " Error setting EAP-TTLS PRF in Schannel."); SecPkgContext_EapKeyBlock key_block; status = QueryContextAttributes(m_sc_ctx, SECPKG_ATTR_EAP_KEY_BLOCK, &key_block); if (FAILED(status)) throw sec_runtime_error(status, __FUNCTION__ " Error generating MSK in Schannel."); _key_block = key_block.rgbKeys; #endif // MSK: MPPE-Recv-Key memcpy(&m_key_mppe_client, _key_block, sizeof(tls_random)); _key_block += sizeof(tls_random); // MSK: MPPE-Send-Key memcpy(&m_key_mppe_server, _key_block, sizeof(tls_random)); _key_block += sizeof(tls_random); #if EAP_TLS >= EAP_TLS_SCHANNEL SecureZeroMemory(&key_block, sizeof(key_block)); #endif } void eap::method_ttls::derive_challenge() { method_mschapv2 *inner_mschapv2 = dynamic_cast(m_inner.get()); if (inner_mschapv2) { #if EAP_TLS < EAP_TLS_SCHANNEL static const unsigned char s_label[] = "ttls challenge"; sanitizing_blob seed(s_label, s_label + _countof(s_label) - 1); seed.insert(seed.end(), (const unsigned char*)&m_random_client, (const unsigned char*)(&m_random_client + 1)); seed.insert(seed.end(), (const unsigned char*)&m_random_server, (const unsigned char*)(&m_random_server + 1)); sanitizing_blob keying(prf(m_cp, CALG_TLS1PRF, m_master_secret, seed, sizeof(challenge_mschapv2) + 1)); memcpy(&inner_mschapv2->m_challenge_server, keying.data(), sizeof(challenge_mschapv2)); inner_mschapv2->m_ident = keying[sizeof(challenge_mschapv2) + 0]; #else static const DWORD s_key_id = 0x02; // EAP-TTLSv0 Challenge Data static const SecPkgContext_EapPrfInfo s_prf_info = { 0, sizeof(s_key_id), (PBYTE)&s_key_id }; SECURITY_STATUS status = SetContextAttributes(m_sc_ctx, SECPKG_ATTR_EAP_PRF_INFO, (void*)&s_prf_info, sizeof(s_prf_info)); if (FAILED(status)) throw sec_runtime_error(status, __FUNCTION__ " Error setting EAP-TTLS PRF in Schannel."); SecPkgContext_EapKeyBlock key_block; status = QueryContextAttributes(m_sc_ctx, SECPKG_ATTR_EAP_KEY_BLOCK, &key_block); if (FAILED(status)) throw sec_runtime_error(status, __FUNCTION__ " Error generating PRF in Schannel."); memcpy(&inner_mschapv2->m_challenge_server, key_block.rgbKeys, sizeof(challenge_mschapv2)); inner_mschapv2->m_ident = key_block.rgbKeys[sizeof(challenge_mschapv2) + 0]; #endif } } void eap::method_ttls::process_application_data(_In_bytecount_(size_msg) const void *msg, _In_ size_t size_msg) { // Prepare inner authentication. #if EAP_TLS < EAP_TLS_SCHANNEL if (!m_state_client.m_alg_encrypt) throw runtime_error(__FUNCTION__ " Refusing to continue with inner authentication unencrypted."); if (m_session_resumed) { // On reconnect we do not need to do inner re-authentication. return; } #else if (!(m_sc_ctx.m_attrib & ISC_RET_CONFIDENTIALITY)) throw runtime_error(__FUNCTION__ " Refusing to continue with inner authentication unencrypted."); SecPkgContext_SessionInfo session_info; if (SUCCEEDED(QueryContextAttributes(m_sc_ctx, SECPKG_ATTR_SESSION_INFO, &session_info)) && (session_info.dwFlags & SSL_SESSION_RECONNECT)) { // On reconnect we do not need to do inner re-authentication. // According to MSDN QueryContextAttributes(SECPKG_ATTR_SESSION_INFO) works from Windows 7 on. Therefore behaviour might vary. return; } #endif EapPeerMethodOutput eap_output = {}; m_inner->process_request_packet(msg, (DWORD)size_msg, &eap_output); switch (eap_output.action) { case EapPeerMethodResponseActionSend: { // Retrieve inner packet and send it. // Get maximum message size and allocate memory for response packet. #if EAP_TLS < EAP_TLS_SCHANNEL m_packet_res.m_code = EapCodeResponse; m_packet_res.m_id = m_packet_req.m_id; m_packet_res.m_flags = 0; DWORD size_data = (DWORD)get_max_message(16384 - sizeof(message_header)); sanitizing_blob data(size_data, 0); unsigned char *ptr_data = data.data(); #else SecPkgContext_StreamSizes sizes; SECURITY_STATUS status = QueryContextAttributes(m_sc_ctx, SECPKG_ATTR_STREAM_SIZES, &sizes); if (FAILED(status)) throw sec_runtime_error(status, __FUNCTION__ " Error getting Schannel required encryption sizes."); sanitizing_blob data(sizes.cbHeader + sizes.cbMaximumMessage + sizes.cbTrailer, 0); DWORD size_data = sizes.cbMaximumMessage; unsigned char *ptr_data = data.data() + sizes.cbHeader; #endif m_inner->get_response_packet(ptr_data, &size_data); if (size_data) { #if EAP_TLS < EAP_TLS_SCHANNEL data.resize(size_data); sanitizing_blob msg_application(make_message(tls_message_type_application_data, std::move(data))); m_packet_res.m_data.insert(m_packet_res.m_data.end(), msg_application.begin(), msg_application.end()); #else // Prepare input/output buffer(s). SecBuffer buf[] = { { sizes.cbHeader, SECBUFFER_STREAM_HEADER , data.data() }, { size_data, SECBUFFER_DATA , ptr_data }, { sizes.cbTrailer, SECBUFFER_STREAM_TRAILER, ptr_data + size_data }, { 0, SECBUFFER_EMPTY , NULL }, }; SecBufferDesc buf_desc = { SECBUFFER_VERSION, _countof(buf), buf }; // Encrypt the message. status = EncryptMessage(m_sc_ctx, 0, &buf_desc, 0); if (FAILED(status)) throw sec_runtime_error(status, __FUNCTION__ " Error encrypting message."); m_packet_res.m_data.insert(m_packet_res.m_data.end(), (const unsigned char*)buf[0].pvBuffer, (const unsigned char*)buf[0].pvBuffer + buf[0].cbBuffer + buf[1].cbBuffer + buf[2].cbBuffer); #endif } else { // Empty packets represent ACK message, and are not encrypted. } break; } default: throw invalid_argument(string_printf(__FUNCTION__ " Inner method returned an unsupported action (action %u).", eap_output.action).c_str()); } }